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PREFACE

This report has been prepared at the request of the Forestry-

Remote Sensing Laboratory at the University of California with funds

supplied by the National Aeronautics and Space Administration. The

primary intent of the present study has been to produce an accurate

forecast of both user requirements and remote sensing capabilities

of the 1980's on the basis of which future remote sensing research

might be effectively planned and executed.

The writer takes this opportunity to express his deep appreciation

to the number of persons listed in Appendix A who provided very helpful

information. While he regrets that space does not permit recognizing

the specific nature of each contribution, the writer trusts that the

positions of the individuals will suggest the nature of their contribu-

tions. He emphasizes that wherever the material in this report is

constructive and helpful, credit is due to the information furnished

by one or more of those cooperating individuals. He also hopes that

he has not made many misinterpretations of that information.

Without slighting contributions of other cooperators, the author

makes the following specific acknowledgments: to Dr. A. B. Park,

former USDA coordinator for remote sensing research (now with NASA),

for providing the USDA-NASA guidelines in the study and to Dr. T. F.

McLintock, Forest Service coordinator for remote sensing research,

for providing guidelines and many helpful suggestions; to Benjamin

Spada, Chief, Forest Survey Branch, U. S. Forest Service,for helpful

suggestions; to Harry W. Camp, Assistant Director and Robert C. Heller,
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Leader Remote Sensing Project, Pacific Southwest Forest and Range

Experiment Station, for many good suggestions; to Dr. Charles E.

Poulton, Director, Range Management Program, Oregon State University,

for many helpful suggestions on range and wildlife aspects; and

particularly to Dr. Robert N. Colwell and Gene A. Thorley, Director

and Assistant Director, respectively, of the Forestry Remote Sensing

Laboratory, University of California, for guidance in planning the

study, for continuing administrative and technical support and for

helpful reviews of the draft of this study.
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I. SUMMARY

Significant benefits to the forestry and range disciplines are

anticipated from earth-orbiting space vehicles by 1980. Useful data

are anticipated not only from ERTS vehicles but from meteorological

and communications satellites as well. This conclusion is based on

the prospective state of the art and other assumptions given in the

report, on rationale also given in the report, as developed from

interviews with specialists in remote sensing research and with

administrators and managers in land-managing agencies,and from

study of current technical publications.

Sixteen remote sensing applications or groups of related appli-

cations judged to be most important of any in the forestry and range

disciplines were evaluated. In one application, Major Land Classi-

fication, large amounts of useful data are anticipated to be contributed

by space sensors in 1980. In four applications moderate amounts are

anticipated to be so contributed. These are Timber Inventory, Range

Inventory, Fire Weather Forecasting, and Monitoring Snowfields. In

the following seven applications small but significant amounts of data

are anticipated to be contributed by space sensors: Detailed Land

Classification; Inventory of Wildlife Habitat; Recreation Resource

Inventory; Detecting Stresses on the Vegetation; Monitoring Air

Pollution Caused by Wildfires and Prescribed Burning; Monitoring

Water Cycle, Pollution and Erosion; and Evaluating Damage to Forests

and Ranges. In four of the sixteen applications no appreciable

amounts of data are anticipated from space sensors in the near future

either because the resolution of details will be too poor or because
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the sequential coverages will be too infrequent, or both. These

applications are Monitoring Large Management Units, Detecting Wild-

fires, Mapping Wildfires, and Monitoring Livestock and Wildlife.

In every application where space-sensed data are anticipated to

be useful those data presumably must be integrated with data derived

by aerial sensing and/or ground surveys tofulfill objectives of data

collection. As explained in the report, objectives of each applica-

tion are to collect a maximum of the large amount of data required

for specific, important jobs of managing forest and related wild-

lands or for setting policies of managing such lands. More details

are summarized in the several tables at the beginning of Section V

of the report.

Recommendations for research and development to expedite and

optimize use of remote sensing from spacecraft and high-flying air-

craft in the near future in forestry and range disciplines include:

(a) research to establish the spectral signatures needed to identify

significant important land classes and variations in forest and range

associations (requiring extensive investigations of plant physiology

and microclimate related to sensing instrumentation); (b) development

of an efficient data handling system for optimum storage and retrieval

of a large amount of forestry and range data including that collected

by space and aerial sensors and by ground methods, (c) accelerated

development of thermal-infrared and microwave sensors capable of good

resolution of details .from high altitudes and (d) benefit-cost studies,

whenever new experience data permit, to determine whether space sensing

or improved aerial sensing provides an economical substitute or complement
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for current methods of data collection. A vigorous, continuing pro-

gram of education is also recommended to foster prompt operational

acceptance of proven research results.
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II. STUDY OBJECTIVES

This study was undertaken to provide more specific information

than previously available on the prospects for utilizing remote

sensing to collect useful data on forest and range lands. Since

conventional cost-benefit studies were not possible, in view of the

lack of experience data on sensing from space, this study concentrated

on interviews with two groups of knowledgeable people as bases for

the conclusions reached in this report. One group represented resource

managers and other primary users of data about forest and range resources;

the other group represented specialists in remote sensing and related

fields.

The primary objectives of this study were:

1. To define which techniques of sensing from space are

prospectively technically and economically feasible within the next

decade (circa 1980) and appear to be potentially efficient for collect-

ing data necessary for sound development and management of forest

and range lands.

2. To recommend research, development, and related studies to

facilitate meeting the foregoing objective, with emphasis on the needs

of NASA and the Forest Service, USDA.

3. To outline the rationale supporting the conclusions reached

under the foregoing objectives.

Important secondary objectives were:

a. To define the important, potential applications of remote

sensing over forest and range lands, including applications for which
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there are no immediate foreseeable prospects for use from space.

b. To define ways in which integration of space, aerial and

ground systems can be used to complement each other for obtaining

useful forest and range resource information.

Sections V and VI of this report entitled "The Applications"

and "The Foreign Potential," respectively, are aimed to meet the first

and third primary objectives and both secondary objectives. Section

IV on "The Sensors" is also aimed at the first objective. Section VII,

"Recommended Research, Development and Testing" is aimed to meet the

second primary objective. Although careful consideration was given

to inclusion of a section on benefit-cost relations this was not con-

sidered feasible due to the many imponderables which would make any

such comparisons highly speculative if not unmeaningful or even mis-

leading. The decision on this matter was in substantial agreement

with the view on "cost-benefit relationships" reflected in the report

of the National Research Council's Central Review Committee on "Use-

ful Applications of Earth-Oriented Satellites" (62).- At the same time,

even without specific cost-benefit data, it is believed that this

present study will provide the kind of definitive information which

the Director of the Budget was seeking in vain when he turned down the

request for funding an earth resources satellite in 1968. The most

pertinent part of his message, quoted in the report on House Sub-

committee on NASA oversight (19) included the statement that "Past

studies have not adequately focused on the specific actions by which

1/ Numbers in parentheses refer to the list of references in Appendix B.
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satellite acquired data would be used to create savings and bene-

fits...plans for using satellites have been too vague...",
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III. THE ASSUMPTIONS

There is very little information on which estimates of potentials

in remote sensing from space can be based. Therefore the assumptions

underlying the estimates become extremely important. The reader is

encouraged to acquaint himself with the following assumptions before

reading further into the report. It may be that he will choose to

disagree with the validity of one or more of the stated assumptions.

If this be the case he is encouraged to look further into the report

and to modify the conclusions of the report in line with such changes

in assumptions as he deems appropriate.

a. Relation of study to other studies and documents.

This study was generated in large part by reported results of

other studies including the following reports: "Earth Resources

Satellite System", a report for the Subcommittee on NASA Oversight

of the House Committee on Science and Astronautics. (19); "Determining

the Usefulness of Space Photography for Natural Resource Inventory",

by R. N. Colwell, Proc. of Symposium on Remote Sensing of Environment,

University of Michigan. (16); "Useful Applications of Earth-Oriented

Satellites, Summaries of Panel Reports", by the National Academy of

Sciences, National Research Council, (63). The study profited particu-

larly by using guidelines, assumptions and conclusions emphasized in

that NRC report and in the detailed report by the NRC panel on forestry-

agriculture-geography (61).

This study accepted as most appropriate the rationale on cost-

benefit relationships in another NRC publication, the "Report of the
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Central Review Committee" (62) that: "...conventional cost-benefit

analysis is not suitable for judging technologies (such as remote

sensing) n the flu ia f -~rma e s tat- =...co st an l enets are highl'-y

conjectural; judgment is necessarily the determinant...".

Two other important references were the USDA program document,

"A National Program of Research for Remote Sensing", by a joint

task force of the USDA and the State Universities and Land Grant

Colleges (80) and "Agricultural Application of Remote Sensing--the

Potential from Space Platforms", Agric. Information Bulletin No. 328

by the Economic Research Service of the USDA (81).

Attention is called to the very useful document entitled "Peace-

ful Uses of Earth Observation Spacecraft" produced by the Willow Run

Laboratories at the University of Michigan several years ago (92).

That three-volume publication emphasized some of the most promising

sensing applications in the forest and range disciplines among others.

It also discussed some possible cost-benefit relationships if sensing

from space were to be used. Quite probably the writer of this present

study would have made considerable reference to the Willow Run study

had its assumptions of sensor capabilities appeared to be more real-

istic for the foreseeable future.

The present study was especially dependent on the following

report as a launching platform for a deeper probe into benefits of

forestry applications of remote sensing: "Potential Benefits...of

Remote Sensing of Agricultural, Forest and Range Resources", by the

Center for Aerial Photographic Studies, Cornell University (13).

-8-



The reader may question, then,why there is no reference in the

present study to specific benefit-cost data tabulated in the Cornell

publication. There are several reasons for this. Although some of

those benefit-cost estimates might be defended as reasonable, were

the rationale published to support them, others do not appear to be

reasonable in view of the rationale given by this writer in Section V.

Furthermore there are so many gaps in the estimates that potential

usefulness of the tabulation is seriously weakened (indicating how

really speculative the whole procedure is). Moreover that tabulation

evidently shows benefits which might accrue through some indefinite

period from all sensing media, in contrast to the more specific out-

look in this present study. Most important, in view of the dearth of

experience data on either benefits or costs of space sensing and the

intangible nature of some benefits, this writer concludes that a more

cautious approach is more useful. He outlines rationale behind a

judgment decision on whether an application is likely to yield bene-

fits in excess of costs rather than going into more speculative evalua-

tions to put dollar values on judgment estimates. At the same time he

suggests that the estimates published by the Cornell group merit examin-

ation in light of rationale given in the present study or available

elsewhere. He also invites the reader's attention to the very few

dollar values mentioned in Section V of this present study and to

those in the report by the NRC panel on forestry-agriculture-geography

(61), bearing in mind that those estimates are intended to be just a

few illustrations of possible magnitudes of costs and benefits.
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b. State of the art within the next decade.

Although it is assumed that there will be continuing improvements

in the art of remote sensing into the indefinite future, no attempt

has been made to define developments beyond the next decade--the approxi-

mate time period emphasized in a recent NASA planning document for

earth surveys (60). By 1980 it is assumed that several earth-orbiting

sensing vehicles will have been launched for the express purpose of

gathering data useful in earth sciences. Presumably none of these

will be manned vehicles. This system, comprising at least two vehicles

(ERTS-D type) with overlapping useful lives of at least two years each,

will have the following capabilities (37, 38, 60).

*Global coverage at periodic intervals no shorter than ten days

and no longer than thirty days (assume eighteen days).

*Sun-synchronous orbit (Except for seasonal variations, sensors

will look down on scenes illuminated by approximately the same sun angle

at a given latitude. This will give informative shadowing of details--

provided cloud cover does not obscure them).

*Ground resolution of objects or details as small as 100 feet in

diameter (¼ acre in size) on contrasting backgrounds. (See discussion

under Section IV on kinds of contrasts required.)

*Sensing in at least three, probably as many as seven, spectral

bands (visible-near infra-red of about 0.4 to 1.2 microns) registered

with return beam vidicon TV cameras, (producing pictures of original

scale of approximately 1 to 3 million, with 100 by 100 mile format and

about 10% overlap, with picture center point locations accurate to

within 10 miles).

-10-



*Optical-mechanical scanner registering same multispectral bands

as those of the vidicon and also registering in the 8 to 14 micron

band of thermal infrared.

*Sensor-gathered data telemetered periodically to ground sites

for dissemination to users.

Other satellites aside from those expressly launched for earth

resources observations will also be contributing to forestry and other

applications. Specifically, meteorological and communications sat-

ellites may be contributing data needed for such applications as

fire weather forecasting. Weather satellites may also indicate when

to turn ERTS sensors on and off.

The state of the art assumed to be available for forest-range

(and other earth science) applications does not include use of data

obtained by classified techniques or instruments, such as those from

military satellites. Presumably there will be continuing gradual

declassification of techniques and instruments which will contribute

to improvements in the overt state of the art--improvements of the

magnitude, for example, as those which came during the last decade or

so when formerly classified cameras and heat-sensing instruments became

available to scientists for civilian applications. It-is common know-

ledge that the military is now using sensing techniques which produce

significantly better resolutions than any overt techniques available.

Hopefully these techniques might soon become available for use outside

the military, but it would appear to be unrealistic to make that very

speculative assumption as a basis for analysis and conclusions of this

study. If a greatly accelerated rate of declassification of such
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techniques comes to pass within the decade--significantly faster than

the rate of declassification during the past several decades--its

contributions to earth science applications may be accepted as a bonus.

And if the reader is more optimistic on this point than the writer he

should make such allowance as he deems appropriate for greater capa-

bilities of remote sensing applications in the forest and range

disciplines than is reflected by this study.

It is assumed that there will have been significant increases in

the application of sensing from aerial platforms, also, by 1980. This

will probably include the use of high altitude jet aircraft capable of

sensing with a variety of instruments over great areas--systems such

as proposed by Katz (49) and by the Cornell Center for Aerial Photo-

graphic Studies (13).

By 1980, also, it is assumed that a large central data handling

system will be in operation with a capability for rapidly reducing,

collating and storing data sensed from space and for rapidly retrieving

and disseminating data to a variety of major users.

By 1980 presumably there will be significant increases in auto-

matic processing and interpretation of raw data procured by remote

sensing. Within a decade possibly as much as fifty percent of routine

analysis of sensed data may be done by image analyzers and other

automatic techniques for matching patterns and spectral characteris-

tics of images. As a minimum by 1980, semiautomatic procedures should

screen out the more significant parts of the raw data for human inter-

preters to concentrate on. Quite possibly a large volume of data will

be interpreted by such procedures as the image discrimination and
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enhancement method developed at the University of Kansas and recently

reported on contract to a military agency (22).

The foregoing discussion assumes a system which is roughly equiva-

lent to the Global Land Use (GLU) system described in the report of the

NRC panel on forestry-agriculture-geography (61). It assumes a

system less advanced than that for Earth-Resources Information (SERI)

proposed in the same publication for possible development by a 12-year

development program,

c, Relation of space applications to aerial and ground techniques
of data gathering.

It is assumed that no application of sensing from space will be an

acceptable substitute for current techniques of data gathering without

adequate development and testing. This assumption poses one of the

greatest limitations of the present study. Indeed the reader may argue

that the study is premature since there has been no opportunity for

adequate testing of any forestry applications of space sensing and in

many instances only limited development *of techniques also. To counter

this argument the writer underlines the wording of the first study

objective which qualifies "techniques of sensing from space" as being

those that "are prospectively technically feasible...and appear to be

potentially efficient...." Furthermore he emphasizes that even though

benefit-cost information is not available to indicate whether a space

sensing method or some other is the less costly method of data collec-

tion, it is worthwhile to sort out the most promising from the least

promising space applications of sensing. Such sorting is needed, even

though it be based almost exclusively on reasoning and judgment
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evaluations. Otherwise the funds and effort needed for applied research,

development and testing of the most promising applications may be

dissipated over a welter of other possible applications including many

that are unlikely to be exploitable.

The assumption is also made that, for almost all applications,

remote sensing will be applied first from the air before being applied

from space. A related assumption is that some most efficient applica-

tions of data gathering for forest and range purposes may rely on

combinations of ground surveys and/or aerial and space techniques.

For example, it is well recognized that some data needed as part of a

comprehensive timber inventory may now be obtained most efficiently by

aerial sensing--areas of forest by predominant species types and size

classes, for example. Other data cannot now be obtained except by

ground surveys--ownership of forest land and condition and quality of

the wood in a stand, for example. As part of the rationale in this

report, considerable attention has been given to aerial applications

of sensing. Some of the discussions in later sections indicate some

applications from space which promise to be technically and economically

feasible in the near future; others which appear to be infeasible from

space (at least in the foreseeable future) and for which aerial sensing

may be the logical method of application.

Even those applications that do not appear feasible from space by

the 1980's merit evaluation as possibilities of application from space-

craft at some more distant date or even within the time span of the

'80's if technology develops more rapidly than judged in this study.
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d. Overlapping of applications into other disciplines.

Although an attempt has been made in this study to confine discus-

sions to applications which are of paramount interest to foresters and

range managers, some overlaps into other disciplines have been accepted

as necessary and unavoidable. Notably, it would be a disservice in this

study to ignore the role of application no. 1 in Section V entitled

"Major Land Classification", since data on land classes are of consider-

able importance to forest and range specialists; notwithstanding that

economists and others may find even more need for such data. That

application, of course, can contribute basic data needed for broad

planning to develop and manage forest-range resources. It also can be

an extremely useful first step to other important applications such as

"Timber Inventory" and "Range Inventory". The reader is reminded that

whenever potential benefits of remote sensing in forestry are added to

benefits credited to other disciplines care must be taken to avoid over-

lapping claims for benefits from such interdisciplinary applications

as "Major Land Classification", "Monitoring Snowfields", etc.

It should be noted also that some applications not enumerated in

Table I of Section V, which lists important applications, are neverthe-

less of value to administrators of forests and related wildland. This

includes applications which are of interest within forest and range

disciplines but which fall primarily in other disciplines. "Monitoring

Feedlots and Marketing Livestock Activities" is one such application and

"Transportation Planning and/or Monitoring" is another.

e. Domestic versus foreign applications.

This study has concentrated on the potential for applications in
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the United States since immediate financing of earth resources satel-

lites is presumed to be solely from domestic sources; also because for

applications yielding results of transieant value it is assumed that

prompt action will be taken in this country to capitalize on that infor-

mation. Nevertheless it is assumed that the satellites will be record-

ing considerable data from terrain outside the boundaries of the United

States and that benefits will accrue from sensing in foreign areas.

The magnitude of those benefits will depend, of course, on a number of

things, including how rapidly and in what volume the data obtained by

sensors are disseminated to foreign users and how promptly action in

foreign areas may be taken on results of transient value. Section VI

of this report comments on some potential benefits of space sensing

anticipated in foreign areas in the foreseeable future.

f. Acceptance into operational use of proven remote sensing
techniques.

It may be argued that almost any technique is technically

feasible==given enough effort and time. Through contacts with re-

search workers and examination of the literature, particularly

current reports by researchers in forest and range sensing (29),

this study has aimed to evaluate prospects for achieving technical

feasibility of applying a technique within the next decade. Conse-

quently only techniques which appear to be feasible of technical achieve-

ment within the next ten years are considered for economic feasibility.

Just as with the prospects of technical feasibility, potential economic

feasibility of applying a technique from space has been estimated

primarily by logic, bearing in mind that improvements in technical
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efficiency favor prospects for economic feasibility. Thus techniques

which may not be economically applied today may be economically

feasible in some tomorrow.

Although it was speculative enough to judge whether a technique

might be technically feasible within the next decade it was more

speculative to estimate whether a technique might be economically

feasible within that same time period. Partly this was due to

difficulty in making a balanced tradeoff between the judgment of the

typical researcher on one hand and that of the typical administrator on

the other. Provided the researcher was optimistic and enthusiastic

about prospects for developing and proving a technique to be technically

feasible, understandably he tended to view the problem of attaining

economic feasibility as a minor one which should not delay applica-

tion of his research contribution. The administrator, understandably,

anticipated a long, hard look at alternatives before applying a tech-

nique which was not operationally proven.

It is assumed that remote sensing techniques which are proven by

testing to be economically feasible will be integrated into the data

collecting procedures of major users of forest and range resource

data. The validity of this assumption is contingent upon effective

procedures for disseminating results of remote sensing research and

development and upon a strong, logical, continuing campaign to inform

and educate potential users in the advantages offered by new techniques.

There is danger that adoption of new and effective remote sensing

techniques may be subject to significantly greater lag than the usual

one which virtually all new techniques encounter due to normal human
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resistance to change. This greater than normal resistance is antici-

pated for at least three reasons. For one, potential users may have

to reorient their objectives to expect kinds of useful data which for-

merly seemed economically unattainable. For example, without unreason-

able expenditures, they may set their sights on getting data on a

repetitive basis (such as phenological monitoring of vegetation) which

would hardly be feasible without remote sensing techniques now in the

offing. Secondly, apparently the potential benefits of remote sensing

have been oversold. Thus many practical administrators of resources

tend to look at all applications of remote sensing as skeptically as

they do at the ones which unfortunately have been extravagantly adver-

tised as panaceas for almost any data collecting task. Back of this

view, understandably, is the resistance of practical administrators

to accept any techniques which offer neither significant savings in

collection effort nor significant gains in quality of data. Thirdly,

some of the potential users may have much information within reach

which they hope may provide many answers they seek but which may not

be evaluated until more effective techniques of analysis are developed.

g. Fractional cost of satellite operation chargeable to forest
and range applications.

It would have been purely speculative to estimate the cost of

remote sensing from space without experience data to go on. Never-

theless some judgment of sensing costs from space seemed desirable as

a framework against which prospective additional benefits might be

projected and examined even if that examination must be subjective.

In particular it appeared desirable to make an approximation of the
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annual cost of ERTS vehicle operation and data handling that might be

chargeable to forest and range disciplines in the year 1980. This

assumes that, although the basic research and development costs for

satellites have already been written off against the overall mission

of NASA, there will be special development and launching costs charge-

able to ERTS. It also assumes that costs of handling (for reduction

of acquired data, collation and storage at a central NASA center and

retrieval service to primary users) will at least equal the annual

cost of the collecting effort (49). According to assumption "b"

there will have been launchings of approximately half a dozen ERTS

vehicles by 1980, each with a lifetime of two years and with over-

lapping lifetimes so that at least two vehicles will be in orbit at

all times. Since the assumed system (designed to provide coverage of

the United States) approximates that assumed for the GLU System

described in the NRC panel I report (61), it is appropriate to use

the cost estimates for that system: $39 million for development costs

and $22 million per year for operation. Assuming the system is used

four years without major modification, the charge would be about $32

million annually.

In rationalizing what part of this cost might be charged to forest

and range disciplines, one approach is to assume that the costs should

be charged proportional to benefits received by all earth resources

disciplines. Although a number of disciplines stand to benefit, the

primary ones may be geology, geography, oceanography, hydrology,

meteorology, agriculture, and forestry-range. It is assumed that

geology may be a large beneficiary of data obtained during the initial
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passes of ERTS vehicles, but that the other disciplines will probably

benefit more from sequential coverages. It is further assumed that ag-

ricuiture will be the largest beneficiary since estimates of amounts

and quality of food are related more directly to the economy than

estimates of soil, water and fiber, and sequential coverages (and crop

calendars) are very useful in agriculture. Thus, over half the cost

is charged to agriculture -- arbitrarily between 50 and 75 percent.

Also--arbitrarily--half of the remaining 25 to 50 percent (12.5 to 25%)

is allocated to the forestry-range disciplines. This means that costs

of somewhere between $4 million and $8 million annually are charged to

the forestry-range disciplines. Therefore it must be assumed that the

total annual value of benefits estimated to accrue from space sensing

over forests and related wildlands in 1980 will exceed such costs. The

total benefits are anticipated from those applications listed in Table 3,

Section V, which are estimated to be applicable from space by 1980.

h. Only important, economically significant applications are

considered.

The applications subsequently discussed and tabulated in Section V

are those aimed to provide substantial amounts of data needed as bases

for decisions and actions by two main groups of people: (a) those

setting policies or planning for use of forest and range resources (e.g.,

heads of agencies or corporations responsible for administering large

areas of such resources), and (b) resource managers. The approach to

the study has been to examine major needs for data collection and

analysis necessary for setting the policies, doing the planning, or

doing the managing just referred to; then to determine what part of the

-20-



data collection might be effectively done by remote sensing.

To indicate how the approach in this study tended to focus upon

economically important data collecting requirements, the following is

cited. During the course of interviews with representatives of two of

the largest land-managing agencies in the country--the U.S. Forest Ser-

vice and the U.S. Bureau of Land Management--it became evident that one

of the biggest jobs facing these resource managers was to protect and

maintain the healthy condition of the vegetation resources. Further-

more those resource managers pointed out that to do this job adequately

required very substantial amounts of data collection, periodically.

From this basis it was not difficult to conclude that one important

potential group of applications of remote sensing can be described as

"Detecting Harmful Stresses on the Vegetation". In this instance there

is little doubt concerning the kind of data required to be collected

by sensors: signatures to indicate both healthy and unhealthy condition

of the vegetation.
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IV. THE SENSORS

In line with its first objective, this study aimed to determine

what specific kinds of sensors and spectral windows might be most

applicable from space to the forestry and range disciplines within the

forseeable future. No attempt was made, however, to explore the subject

of sensors in depth. For recent, informative evaluations of this, inso-

far as it affects agricultural, forestry and range applications, the

reader is invited to the following materials in particular: Volume III

on "Sensor Requirements..." of the Willow Run study on "Peaceful Uses

of Earth Observation Spacecraft" (92); Part II on "Remote Sensor

Capability" of the Cornell study (13); and pages 4-16 of Agric. Info.

Bulletin 328 (81). Although those publications and others provided

much information helpful in arriving at the conclusions of this study,

prime attention was given to results of contract research studies in

the forest-range disciplines funded by NASA, to related research studies

and to views of the various individuals engaged in that research.

The consensus appears to be that the most useful windows of the

electromagnetic spectrum will be one of approximately 0.4 to 1.2 microns,

one of 3 to 6 microns and another of approximately 8 to 14 microns for

sensing applications in the forestry and range disciplines. The first

window, open to the visible and near infrared part of the optical

spectral regions, should be useful for registering the reflectance

signatures of a number of significant natural objects and phenomena. The

other windows,open to the thermal part of the infrared spectral region

should be particularly useful for registering emitted signatures of the

heat from fires and temperatures of water and ground in forest and
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range areas and for census of livestock and wildlife. As explained in

Section V, all three windows are now used for aerial applications of

sensing by forest and range scientists. However, under the present

state of the art thermal sensors are relatively bulky and heavy. Also

requirements for cryogenic cooling limit their use from space platforms

(60). In effect, through the 1980 time period the visual and near infra-

red window should be the really important one over forests and ranges.

This window will probably be exploited virtually exclusively by photo-

graphic cameras, return beam -vidicon (particularly from space) and

optical-mechanical scanners doing multiband spectral reconnaissance.

It should be noted that a number of worthwhile investigations have

been made to determine how useful other spectral windows may be in

forestry and related fields, specifically those utilizing the ultra-

violet and the microwave spectral regions. There is no good prospect

that these windows will be useful in forest and range applications in

the near future from space. The ultra-violet window, open to the short

wavelengths of approximately 30 to 300 angstroms, is likely to be clouded

so much by scattering, reflectance, and other forms of atmospheric

interference that it offers little promise of application from space,

or even from high altitudes in the atmosphere (15). Eventually, the

window open to radar and other sensors in the microwave spectral region

(approximately 0.1 to 30 cms. or more) may be a useful one for such

space applications as detection and mapping of forest fires and to

penetrate cloud cover that restricts use of other sensor application.

For immediate, foreseeable time periods, apparently its usefulness is

precluded by difficult technical problems. One of these problems
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which is magnified in space application, under either active or passive

systems, pertains to the size and weight of the sensor package, including

antennae. Thus io all-weather capability is assumed for sensing from

space by 1980. The voids caused by weather-obscured views from tele-

vision and thermal space sensors may be filled only by aerial sensors

including airborne radars.

It should be noted that radar is now judged by some to be an

ambiguous sensor of vegetation. It is not clear whether the contrasting

responses picked up by that sensor are influenced to significant

degrees by variations in vegetation patterns or, as seems more likely,

by the landforms. Nevertheless, when operated from aircraft, radar

can be very useful for forestry purposes, along with other sensors in

the microwave regions, in at least one respect. It will reveal con-

trasting boundaries between forest and open land and water when cloud

cover precludes success by photographic and thermal sensors.

Although the direct sensing techniques just discussed will be

stressed during the remainder of this report, there are indirect tech-

niques which deserve mention. These are the kinds implied in the first

of the "three basic approaches to the problem of deriving earth re-

sources data from an orbiting satellite" described in the report of the

House Subcommittee on NASA oversight (19). Those three approaches, or

systems, are: (a) to collect, by satellite, data sensed by instruments

situated on the ground and to transmit such data to users on the ground

(a variation of a communication satellite), (b) to record imagery from

sensors in space and transmit the hard copy to the ground via reentry

capsules (a most expensive system), and (c) to record and transmit imagery
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from space sensors via telemetry. In this study, the writer emphasized

the third system but also anticipates some applications under the first

system. It should be noted that a satellite stationed in geosynchronous

orbit may perform an extremely useful function in picking up and relaying

data sensed by stations situated in remote locations on the ground. Two

applications in particular should benefit from communication service

provided by satellites: These are applications number 9 and 13 (fire

weather forecasting and monitoring water cycle...) discussed in Section

V and tabulated in Table 1.

Since for the near future sensors registering in the visual and

near infrared appear to be the ones most useful from space in the for-

estry and range disciplines, it is appropriate to examine some advan-

tages and limitations of imagery from space. An excellent reference

on the various factors governing quality of photographic images is

given in Chapter 2 of the Manual of Photographic Interpretation (2).

Emphasis there is on three characteristics governing image quality:

(a) the tone or color contrast between an object and its background,

(b) image sharpness characteristics (essentially, "ground resolution"),

(c) stereoscopic parallax characteristics. Although this enumeration

may have been made with aerial imagery primarily in mind, the listing

evidently is applicable to all kinds of imagery including that from

space. It is instructive to briefly examine each of these characteris-

tics insofar as they may be affected as the range of photography is

increased to space altitudes.

Contrast. Results of research by Carman and Carruthers about a

decade ago (10) indicated that contrast, or luminance range, of a ground
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scene decreases as altitude above the ground increases. That study

showed that the contrast range for some common scenes viewed from the

ground might be on the order of 40 or 50 to 1. When viewed from an

altitude of about 4,000 feet the range seldom exceeded 10 to 1 for the

same scenes, and when viewed from hyperaltitudes it could be expected

to be only about 5 to 1. The reasons for this are discussed in detail

in a recent ITEK publication by Brock, et al. (9) and may be summarized

by the following quotes: "The...effects on ground objects viewed from

above the atmosphere are a reduction of reflected, image-forming light

and an increase in the overall luminance of the objects due to scattering

in the atmosphere. The random scattering of light gives the atmosphere

a luminance of its own, and as particle concentration in the atmosphere

increases more light is scattered and less is transmitted directly..."

An example given in the ITEK publication indicates how the atmos-

phere reduces the contrast of objects viewed through it and why bright

objects are affected much less than dark objects even though their con-

trast ratios are te same. Assume an object with a luminance of 600

foot-lamberts surrounded by a background with a luminance of 200 foot-

lamberts. The contrast at ground level would be 600/200 or 3:1. If

the luminances of both object and background are increased by a uniform

atmospheric luminance of 200 foot-lamberts, the contrast is 800/400 or

or 2:1. If, also, the luminance of both object and background are re-

duced 50 percent due to transmission losses there would be a further

reduction of contrast to 500/300, or 1.7:1.

The reader will appreciate that if there is no contrast, or if the

contrast drops below the detection threshold of the interpreter (human
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or device), there is no image to interpret.

Since that part of the atmosphere containing light-scattering

particles (water, dust, smoke, etc.) doesn't extend above 30,000 feet

altitude, both high-altitude aerial imagery and space imagery are

penalized approximately the same by effects of atmospheric scattering.

Another quote from the ITEK publication is given to emphasize why clear,

dry air provides the best photographic conditions. "The...scattering

and transmission is affected by meteorological conditions. As the

relative humidity increases...scattering increases ....In industrial areas,

smoke and other impurities increase the particle concentration in the

atmosphere, causing increased scattering. In arid regions, dust will

have the same effect but the relative humidity will be less." This

suggests that forests and rangelands offer somewhat better sensory

conditions than more developed areas; also that ranges may offer some

of the best conditions, since so many are situated in arid regions.

Resolution. The characteristic termed "image sharpness" in the

Manual of Photographic Interpretation is essentially an equivalent of

the commonly accepted current term of "ground resolution" defined by

Katz (48) and standardized in the Space Handbook (68). "Resolution" is

the preferable term. The ground resolution of details of objects is

directly dependent upon the specifications of the sensors, such as

camera lenses, the sensor platforms, the processing of the data and

the flight altitude of the sensor above the objects of interest.

During the past decade or so various tables have been published to in-

dicate resolution requirements for identification of certain features

or objects. These tables unquestionably have been useful to those
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designing and developing sensing systems to produce the imagery needed

by various scientific disciplines. Yet the usefulness of such infor-

mation has been limited because too often the ::contrast:: characteristic

has not been specified.

It may be pointed out that the choice of one of the parameters

governing resolution is limited for space imagery--the flight altitude

for long-lived space vehicles is generally limited to that above three

or four hundred miles. For aerial imagery on the other hand, there is

more latitude for tradeoff between altitude and camera specifications

to meet given requirements for resolution and contrast. It may be

emphasized, however, that space vehicles offer one notable advantage

over aerial vehicles in meeting resolution requirements--they are more

stable platforms for acquisition of data.

Stereoscopic parallax. For some important remote sensing applica-

tions in the forest and range disciplines parallax is not vital. For

others it is. For instance, measurement of parallax may be necessary

as the most practicable remote sensing procedure for estimating heights

of stands of trees, which in turn are good indexes to timber volumes.

In such instances space photography is seriously limited. As explained

by the writer in a recent publication (96), the effective use of

parallax for height estimation of objects or features on space imagery

is limited to those with heights in excess of the normal for timber or

other vegetation types. Due in part to difficulties in perceiving

features three-dimensionally on overlapping images taken from space, none

of the ERTS flights scheduled for the near future, apparently, is designed

to procure stereoscopic imagery. The specifications for overlap are
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only to insure complete, nonstereo coverage (60, 37, 38).

As a practical test of the considerations just discussed, it is

instructive to note some results of interpretation of Apollo 9 photo-

graphy. This test, limited though it was, is the best test of space

photography available to the forest and range disciplines to date. From

the report on interpretation of the photography made by the Forestry

Remote Sensing Laboratory (18) and from interviews with personnel who

contributed to that report and with others who worked with that photo-

graphy, the following conclusions may be made pertaining to contrast

and resolution.

The contrast range is evidently within that anticipated. For most

scenes, apparently, it does not exceed the 5:1 ratio mentioned above,

although contrast between a few objects and features in the desert

areas of the southwestern United States appears to exceed that ratio.

The resolution of areas (as distinct from that of linear features

such as roads) varies considerably depending primarily upon the contrast.

Some high-contrast features as small as 100 feet in diameter are clearly

resolved, while some low-contrast features at least 300 feet in diameter

are not. Contrasting features in the Salton Sea area with dimensions

no greater than 100 feet in diameter are recognizable. Undoubtedly

those identifications are facilitated not only by the contrasting

patterns of crops but by the linearity of boundaries between features

and the clarity of the atmosphere in this desert oasis. In Arizona,

where much of the background is light, desert landscape, images of such

features as corrals, farmsteads, agricultural clearings and timbered

areas are resolved where dimensions are no greater than 100 feet. Here,
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too, in some instances identification is facilitated because of linear-

ity in boundaries. The photography over the southeastern United States
(over Mississippi and adiacent sttes!) also exhibits instances where

images of features as small as 100 feet in dimension are resolved--

borrow pits, for example. To some degree recognition of these features

also is simplified by some linearity of boundaries, but apparently

the prime reason for the good resolution here is that the contrast is

relatively high. Many of the borrow pits are situated within dark-

toned stands of coniferous timber. On the same photography, fields

considerably larger than 100 feet in each dimension are not generally

recognizable in the Southeast, even though many of these are surrounded

by coniferous timber and most of the field boundaries are rectangular.

Although there is some contrast between fields and timber, the contrast

ratio is not as great as that between borrow pits and timber.

It may be inferred that one reason for the relatively poor contrast

in the photography of the Southeast as compared to that over the South-

west is because of the greater scattering of light due to more particles

of water, smoke, dust, etc. in the Southeast.

The Apollo 9 photographic examples indicate why it is desirable to
discuss both contrast and resolution when specifying the kind of imagery

desired for a particular purpose. To an appreciable degree these ex-

amples indicate that good quality imagery may be easier to obtain over

range lands than over forest lands. The foregoing are photographic

examples of some of the most important ranges and forests in the Nation.

The kind of land use pattern and contrasts in one region tend to empha-

size some significant details--those of the ranges. In the other region
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they tend to de-emphasize some significant details--those of the forests.

Before concluding this section one of the disadvantages of sensing

from unmanned satellites should be noted. It may not be directed, as

in aircraft flights, to take advantage of favorable weather conditions.

This disadvantage is of considerable significance over many parts of

the country. As emphasized in a report in 1966 by Lent (55), cloud

cover can cause significant interference over forested areas. For

example, it is probable that in any given year the relatively few passes

of a space sensor may not have a single opportunity to register ground

detail in some parts of the Pacific Northwest. Even in areas, as in

midcontinent, where cloud cover may not appear to be a serious obstacle

it must still be reckoned with. For instance, according to a study

reported to NASA in 1968 (69) there is a strong probability that it

would require 28 passes of a satellite to insure a cloud-free pass over

a 1000 square mile area of Indiana in the vicinity of Purdue University.

An important offsetting advantage of optical sensing from space

is that broad synoptic coverages taken with similar sun angles (often

within spans of only hours or days) can provide uniformity and consis-

tency in tones and patterns of images. This synoptic cover cannot be

duplicated by aerial sensing, which may exhibit many variations in

images for similar objects caused by variability in conditions during

the long periods required for acquisition of data over large areas.

This advantage of space sensing obviously facilitates reliable interpre-

tation of imagery by humans and by machines.

In summary, advantages of space sensing are (a) a synoptic view

amenable to analysis by machines and sensor signatures, (b) a stable
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sensing platform, (c) sequential coverage opportunities not available

from aircraft. Advantages of aerial sensing are: flexibility in

directed coverage in (a) timing (to take advantage of weather, for

example) and (b) resolution (due to free choice of altitude and scale).
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V. THE APPLICATIONS

A. General

The rationale in the section, covering more than a dozen applica-

tions (or groups of applications in turn), aims to explain (a) the kinds

of data needed to meet requirements of a job in resource management or

to set policies for such management and its importance, (b) how remote

sensing may contribute in collection of such data, (c) what constraints

there are on sensing in terms of resolution and frequency of application,

and (d) conclusions on the prospective feasibility of the sensing

application from space by the 1980 time period.

Table 1 itemizes the important applications and indicates which

ones appear to be applicable from space by 1980 (summary of point d,

above). This is a very compressed listing as compared to more than a

hundred forest and range applications itemized in the study on "Potential

Benefits..." made by the Cornell Center for Aerial Photographic Studies

(13). This compressed listing is to eliminate those applications for

which there appeared to be no significant economic justification in

the foreseeable future (according to assumption "h", Section III) and

to combine a number of closely related applications into groups.

It may be argued that a further consolidation of the applications

listed in Table 1 is possible, since some of the applications require

collection of similar, if not identical, items of data. Indeed some

phases of some applications overlap into other applications (or groups

of applications). It seems appropriate, however, to identify these 16

-33-



applications separately to point up problem areas and to focus clearly

on prospective economic benefits. Bearing in mind that budget requests

are best framed explicitly, even though benefits may not be justified

in specific dollar terms, it may be argued that rather specific benefits

are anticipated from such applications as "Timber Inventory" and "Forest-

Range Damage Surveys". Contrast this with a comprehensive but vague

"application" such as "Census of Natural Vegetation" which conceivably

would include not only the foregoing specific applications but others

as well. Such a vague application would be unlikely to attract financial

support without detailed explanation. In this connection it is pertin-

ent to note the experiences of one research administrator in a resource

agency during hearings before committees on congressional appropriations.

Responses to requests for funding research in remote sensing were nega-

tive or apathetic unless related directly to some specific problem such

as that of reducing damages by forest fire.

The applications in Table 1 are comparable with those listed and

discussed in Agricultural Bulletin No. 328 (81) which is focused on

important applications of sensing in the field of agriculture. Indeed

some of the applications are identical to those listed in Table 4 of

Bulletin 328. In part this indicates that similar criteria were used in

both studies to determine "applications" of economic importance. In

part it illustrates some of the unavoidable overlapping applications

between scientific disciplines, recognized in assumption "d", Section III.

The subtitles in Table 1, "Resource Classification and Inventories"

and "Monitoring and Protecting the Resources" not only suggest the

kinds of functions served by the applications grouped under each subtitle,
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they also indicate two distinct categories of application based on

required frequency of application. The applications in the first

category are normally required only infrequently (at intervals of a

few to several years), just often enough to determine long term trends.

Those in the second category, however, are required at much shorter

intervals (of months, weeks, or days) or continuously at some seasons,

or on a directed basis as the need arises.

As emphasized by Colwell in his paper No. AD163 for the 19th

Congress of the International Astronautical Federation (17), one great

advantage of space sensing is a sequential mode lending itself to the

detection of changes in the earth resources. Colwell defines five

variations of mode which correspond to five different intervals of

sequential coverage. His first four variations (ranging from detection

of changes occuring within seconds to those within several months) fits

within the second broad category in Table 1. His other variation

(detection of changes occuring in a period of several years) fits

generally within the first broad category in Table 1. Data obtained

from applications in the first category are useful over relatively

long periods. In contrast, data from most applications in the second

category, (such as fire detection data) have transient values and

quickly become obsolete.

Applications in the second category tend to be considerably more

costly, for equivalent areas surveyed, than those in the first category--

essentially because more frequent applications are required. It will

be noted from subsequent discussion that some applications in the second

category are deemed to be infeasible from space by 1980 because of the
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requirement that they be applied frequently or continuously. The reader

should bear in mind that this rating is contingent upon the state of

ihe art that has been presumed under assumption "b" in Section II.

Any modification in that assumption with respect to mode of operation

of sensors in space by 1980 can have a significant effect on that rating.

So that the reader may more easily judge how a modification of that

assumption may modify the rating of any application, the first column

of Table 2 indicates the required frequency for each application. It

will be noted that this table also summarizes various criteria for

rating prospective feasibility of applications from space approximately

a decade from now.

Every one of the last four columns in Table 2 represents subjective

material. The material shown there depends on the information obtained

during interviews with researchers and resource managers and in current

publications. Such material was evaluated to arrive at the summary

''judgments" of prospects for feasibility of space sensing applications

by the year 1980. Column 2 shows the prospective feasibility of register-

ing a response from space from the most applicable sensor(s). This

does not mean that the response is an identifiable signature for a

particular phenomenon or object. Column 3 shows the estimated feasi-

bility of differentiating responses and establishing signatures to

identify the particular data items (objects and/or phenomena) necessary

to be collected during an application. Column 4 indicates whether the

required frequency is estimated to be realizable within the state of the

art in 1980.

Column 5 indicates whether space sensing is prospectively more
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efficient that other data collecting techniques such as aerial sensing

or ground work (by providing at less cost the data now collected by

other methods, or by providing data infeasible of collection except

from space). It also indicates where space sensing might be effectively

combined with another data collecting method(s). Thus the information

in column 5 should be of interest to anyone who is interested in design-

ing an efficient data collecting system. It will be no surprise to

those who have recently wrestled with problems of survey design that

in every instance where a "yes" is shown in Column 5 to indicate that

space sensing is applicable there is also the qualifying note that space

sensing should be integrated with other data collecting procedures.

Two things merit emphasis that may be self-evident from this table.

Unless all criteria in columns 2-5 inclusive are met there appears to

be no prospect for an application from space by 1980. Also, in trying

to visualize prospects in the future beyond the next decade, or in the

event the reader wishes to liberalize the assumptions made in Section

II, it may be helpful to focus on those applications which have favorable

ratings for some, but not all, criteria. For example, for "Detecting

Wildfires" the "some" in column 2 and 3 might be a cautious "go"

signal for the application--the feasibility in the next decade for at

least some fire detection by space sensing devices. The "no" in column

4 is a "stop" signal, however, during the 1980 time period; but whenever

the requirement is met for the frequency of application specified in

Column 1 there may be a bright green light for this application from

space.

Table 3 summarizes the relative usefulness, to resource managers
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and planners anticipated in the time period of 1980 of space sensed

data and of data collected by other media. The indications of "small",

.i.odeirate. and "iarge' amounts of data shown in the table are relative

ratings. The reader is invited to discussions of individual applica-

tions for explanation of what is involved for each. As very rough

approximations it may be inferred that with total current effort (or

cost) for an application as the base, the relative proportions of the

base that might be replaced in 1980 by data collection from space are

as follows: for "small" about 5 to 10%; for "moderate" about 10 to

25%; and for "large" about 50% or more.

In Table 3 the emphasis is on the work function which justifies

the need for specific data rather than, as in Table 1, on the data

collecting application, per se. Hopefully, Table 3 indicates the

prospective reliance that various users will place on the several methods

of data collection a decade from now. If assumption "f", Section III,

proves to be valid (that the majority of users will accept new methods

of data collection offering reasonable prospects of greater efficiency

than older methods), the material in Table 3 should prove helpful to

administrators and managers of forest and range resources and to their

staff specialists who collect resource data. It will be evident from

this table, just as from Table 2, that for no application may all data

collection be done solely by space sensing. Integration with aerial

and/or ground work is the optimum procedure.

The subdivision in Table 3 "Use for policy planning" pertains to

such persons as legislators and administrators responsible for policies

and plans at national, regional and state levels. Their needs are

-38-



obviously for summaries of resource situations over large areas to

point up problems which are wide in scope. To some degree the national

and state administrators of forest and range resources are presumed to

be interested also in the more detailed data implied under the sub-

division "Use for detailed planning and managing-protecting". Mainly,

however, this column of the table refers to governmental representatives

at local levels (such as counties), administrators and managers of such

governmental units as national forests and state forests, heads of

forest industrial companies and the staff specialists who do the de-

tailed planning and participate directly in management of resources.

Table 3 is in general agreement with Table 4 of Agric. Info. Bull. 328

(81). The several applications which were common to that study and the

present report are rated essentially the same in terms of feasibility

from space. For example, a classification of major land uses is rated

as feasible from space and monitoring livestock and wildlife is rated

infeasible.

It should be noted that an application may collect only one

specific kind of data, as in "Mapping Wildfires". Here raw data

collected by a sensor on the location of a fire perimeter can be trans-

lated quickly into information needed by a fire boss in directing his

fire fighters. On the other hand, the application may collect a variety

of data, as in "Timber Inventory". Here the sensor may collect data

on the extent and location of forest types, on stand heights, tree-

crown diameters, stand density, etc., which may be translated into

part of the package of information needed by a forest manager as a

basis for his decision on the allowable cut of timber for a working
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circle or by those who determine the forest policies for a nation or

one of its political subdivisions. Some data needed for those decisions

must be collected by on-the-ground surveys coordinated with sensing

operations; other data for that package of information must be generated,

largely, by planning decisions made by resource managers or policy

setters. For instance, decisions on the locations of tracts where

timber cutting must be restricted or prohibited due to existing or

planned recreational developments may not be influenced necessarily by

data collected by sensors.

Some data collected for one application may be identical to data

needed for another application. For example, much of the data collected

in "Major Land Classification" is useful in both "Timber Inventory"

and "Range Inventory" applications. Furthermore something stated in

the USDA program document (80) may be noted; items of data, per se,

are not necessarily useful items of information until they are collated

and evaluated.

For reference by those concerned with drafting specifications for

sensors and sensing vehicles in the forest-range disciplines, Table 4,

"Ground Resolution Requirements...", has been included. The reader will

appreciate that these summations are only approximate guides to require-

ments which, for any specific application, depend upon a number of

factors. These include the feature-background contrasts of the particu-

lar environment being surveyed and specific objective of the survey.

As some entries in the table indicate, if survey objectives call for

detailed information the resolution requirements tend to be more restric-

tive, at least for some needed data.
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In considering the following summations in Tables 1-4, and discussions

of the various applications, the reader is urged to bear in mind that

data collection and handling on any particular geographic unit may be

done most efficiently as part of one integrated task serving the pur-

poses of a number of applications and disciplines. This is implied by

assumptions "c" and "d" of Section III.
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Table 1: POTENTIALLY IMPORTANT APPLICATIONS OF REMOTE SENSING OVER
FOREST AND RANGE LANDS 1/ (Prospective application from
space by 1980 indicated)

A. RESOURCE CLASSIFICATION AND INVENTORIES

Prospective Application from Space

Substantial2 / Limited 2/ Application
application- application- unlikely

Application or Group of
Applications

1. Major Land Classification X
(Includes charting trends in
such major land use classes
as forests, grasslands, marsh-
lands, cultivated and other
developed areas; snowfields,
rocky barrens and other
wastelands).

3/2. Detailed Land Classification X-3 /

(Includes: in-place mapping of
such significant forest
associations as the mixed conifer
type in the Sierra Nevada Mountains,
spruce-fir type in the Rocky Mtns.,
oak-hickory type in the East and
bottomland hardwood type and
Longleaf-Slash Pine types in the
South; also soil-vegetation surveys).

1/ See text for discussion of criteria for separating "important" from
other applications and for rationale supporting information in this table.
2/ In a "substantial" application, space sensors provide a large pro-
portion of the data needed to meet information requirements of a job.
In a "limited" application, space sensors provide only a small proportion
(far less than half) of the data requirements.
3/ Information on "major land classification" contributes indirectly but
significantly to facilitate these six applications. See discussion in
text on how "land classification" data obtained through space sensing
facilitates "Timber Inventory", for example.
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Substantial Limited Application
application application unlikely

3. Timber Inventory X3

(Includes estimating and
charting long-term trends
of volumes, growth, removals,
mortality and condition of
timber by key species and
by species type and timber-
land productivity classes).

4. Range Inventory X3 /

(Includes estimating and
charting long-term trends of
amount, growth and condition
of forage by species or
palatability groups).

5. Inventory of Wildlife Habitat X3/
(Includes charting long-term
trends in condition of habitat
for game and fish).

6. Recreation Resource Inventory X3-

B. MONITORING AND PROTECTING THE RESOURCES

7. Monitoring Large Manaqement X
Units

8. Detecting Stresses on the X
Vegetation
(Includes detecting, prior to serious
or epidemic stages, incidence of
damage or loss of plant vigor from
various temporal impacts such as from
insects, disease, air pollution or
lightning; also monitoring
survival rate and condition of
plantations, windbreaks and
shelterbelts).

9. Fire Weather Forecasting X
(Includes prediction and detection
of cloud-to-ground lightning
contacts and recording other data
as bases for fire weather fore-
casting and fire suppression
planning).
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Substantial Limited Application
application application unlikely

10. Detecting Wildfires X

11. Mapping Wildfires X

(Charting spread of wildfires
as aids to directing fire
suppression. Includes
measuring total environment
around large fires).

12. Monitoring Air Pollution X
Caused by Wildfires and
Prescribed Burning

13. Monitoring Water Cycle, X
Pollution and Erosion
(Includes detection and
charting trends in water yield,
erosion, turbidity, saturation
of subsurface zones where
flood peaks may originate,
sources of avalanches, etc.;
also delineation of flooded
areas).

14. Monitoring Snowfields X
(As bases for predicting
water yield and avalanches.
Partial overlap with appli-
cation No. 13).

15. Evaluating Damage to Forests X-
and Ranges
(Includes delineating and
estimating amounts of timber
and forage destroyed by
insects, disease and fire;
and of salvageable timber).

16. Monitoring Livestock & Wildlife X
(Includes inventories and charting
movements of domestic and wild
animals and fish, and detection
of diseased livestock).
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Table 2. CRITERIA RATINGS TO JUDGE FEASIBILITY OF FOREST & RANGE
APPLICATIONS OF SENSING FROM SPACECRAFT, CIRCA 1980

Criteria-/

Application or
group of
applications

(1)

Shortest
frequency of
application
usually
required

(2)

Registering
space sensor
responses
judged
feasible

(3)
Establishing
signatures
judged
feasible

(4)

Required
frequency
of
sensing
judged
feasible

(5)

Estimated
more efficient
than aerial or
ground work

1. Major Land
Classification

2. Detailed Land
Classification

3. Timber
Inventory

4. Range
Inventory

5. Inventory of
Wildlife Habitat

6. Recreation
Resource
Inventory

5 yr
intervals

2/
n.a.-

5-10 yr
intervals

5-10 yr
intervals

1-10 yr
intervals

n.a.

Yes

A few, mostly

A few, mostly

A few, mostly

A few, mostly

A few, mostly

Yes Yes

indirectly3 /

indirectly/ /

indirectliy /

indirectly3/

3/indirectly-

n.a.

Yes

Yes

Yes

n.a.

Yes, in
combination

Yes, In
combination

Yes, in
combination

Yes, in
combination

Yes, in
combination

Yes, in
combination

7. Monitoring
Large Manage-
ment Units

Biweekly
in growing
season

8. Detecting
Stresses on the
Vegetation

9. Fire Weather
Forecasting

At least
semi-annually

Daily in fire
season

A few A few

Some Some

Yes

Yes, for
some

Yes, in
combination

Yes, in
combination

10. Detecting
Wildfires

11. Mapping
Wildfires

Daily to
hourly in fire
season

6 hr inter-
vals on major
wildfires

A few A few No

Some Some

Some

No

NoSome
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(4)

Every other Large concentrations only
day in
season

At least Gross changes in turbidity
biweekly in and erosion
growing season,
daily in flood
season

12. Monitoring
Air Pollution
Caused by Wild-
fires and Pre-
scribed Burning

13. Monitoring
Water cycle,
Pollution and
Erosion

14. Monitoring
Snowfields

15. Evaluating
Damage to
Forests and
Ranges

Weekly in Yes
ablation
season, monthly
in winter

n.a.

Yes

Extensive damages only3/

Yes, for Yes, in
some combination

Yes, for Yes, in
some combination

Marginal
part of
season

Yes,
in combination

Yes, for Yes, in
some combination

16. Monitoring
Livestock &
Wildlife

n.a. No

1/ As explained in the text, a "no" for any criterion means that any
criteria listed in a column to the right of that also are rated "no"
or their rating is immaterial. Therefore, only where a "Yes" is listed
under column 5 is an application judged to be economically feasible by
substantial or limited space sensing by 1980. (Those applications in
Table 1 indicated as having substantial or limited application from
space).

2/ A "not applicable" (n.a.) designation indicates that need for an
application has no standard time relation. The application is directed
as needed. E.g. county assessors may require a detailed land classifi-
cation only after a period of rapid economic development, and a forest-
range damage survey is required only when fires or epidemic stresses are
believed to have caused serious damage to the resources.

3/ These are judged to be applicable generally indirectly as they utilize
space sensing data attributed to application No. , "Major Land Class-
ification". (Those applications in Table 1 designated by footnote 3).

-46-

(1) (2) (3) (5)



Table 3. ESTIMATED USEFULNESS OF SPACE SENSED DATA AND DATA
COLLECTED BY AERIAL SENSING OR GROUND SURVEYS, BY
APPLICATION AND CLASS OF USER, CIRCA 1980. 1/

Application or group
of applications

1. Major Land
Classification

2. Detailed Land
Classification

3. Timber Inventory

4. Range Inventory

5. Inventory of Wildlife
Habitat

6. Recreation Resource
Inventory

7. Monitoring Large
Management Units

8. Detecting Stresses on
the Vegetation

9. Fire Weather Forecasting

10. Detecting Wildfires

11. Mapping Wildfires

12. Monitoring Air Pollution
Caused by Wildfires &
Prescribed Burning

13. Monitoring Water Cycle,
Pollution & Erosion

14. Monitoring Snowfields

15. Evaluating Damage to
Forests and Ranges

Use for policy planning

Space data

L

na

M

M

s

s

na

na

na

na

na

s

s

M

na

Other data

L

na

L

L

na

L

Use for detailed planning,
managing-protecting

Space data Other data

na na

s

s

S

S

s

L

L

L

L

L

na L

na

na

na

na

L

L

L

na

L

L

L

L

L

L

L

L

S

M

S

S

M

S
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Table 3 (con'd)

16. Monitoring Livestock & na na -- L
Wildlife

l/ Estimated usefulness is indicated by symbols denoting relative amounts
of useful data, as follows: L-large amounts, M-moderate amounts, s-small
amounts. (See text for explanation of these terms.) A dash indicates that
negligible amounts of data, if any, are estimated to be contributed by the
particular collection media to the particular class of user. "na" indicates
that the application is not generally of interest to the particular class
of user.
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Table 4. GROUND RESOLUTION REQUIREMENTS FOR IMPORTANT FOREST
AND RANGE APPLICATIONS OF REMOTE SENSING

Application or Group of
Applications

Approximate Ground Resolution
Usually Required 1/

1. Major Land Classification

&

2. Detailed Land Classification

3. Timber Inventory

4. Range Inventory

&

Several hundred feet or less where
interfaces are contrasting: bare
soil-vegetation, forest-grass, etc.
Ten feet or less where interfaces
are noncontrasting, as for sub-
classes of forest based on species
composition.

Several feet or less for many items
of data such as those on species
and sizes of individual trees. 2/
Three-dimensional resolution is
required on some of these items also.

Several inches for many items of
data such as those on species
and condition of herbs. 2/

5. Inventory of Wildlife Habitat

6. Recreation Resource Inventory

7. Monitoring Large Management
Units

8. Detecting Stresses on the
Vegetation

9. Fire Weather Forecasting

Ten feet or less for the most
detailed items of data. 2/

Ten feet or poorer (even several
hundred feet for some items) is
satisfactory.

Several hundred feet for most stresses
that are affecting significant
geographic areas; several feet for
stresses in incipient stages or affect-
ing isolated trees or clumps of
vegetation.

Several hundred feet or somewhat
poorer for tracing synoptic patterns
of thunder storms. Resolution not
applicable for other general
application which is based on'use of
satellites for communicating weather
data gathered by ground stations.



Table 4 (con'd)

10. Detecting Wildfires Twenty feet

Twenty feet for locatiIng spot
fires. Poorer resolution up to
100 feet or more satisfactory for
mapping fire fronts.

12. Monitoring Air Pollution
Caused by Wildfires and
Prescribed Burning

13. Monitoring Water Cycle,
Pollution and Erosion

14. Monitoring Snowfields

15. Evaluating Damage to
Forest and Ranges

16. Monitoring Livestock
and Wildlife

Possibly several miles

Several hundred feet for significant
extent of water pollution and
floodings (as cuased by turbidity).
Ten feet or somewhat poorer for
erosion affecting significant
portions of watersheds.

Several hundred feet

Several hundred feet for damage
that is extensive; several feet
for damage that is localized or
exhibits only minor physical effects.

No poorer than several feet

1' Resolution of imagery tolerable for identification (as by spectral sig-
nature) of objects of features with normal feature-background contrast (see
discussion of "Contrast" in Section IV). This also applies only when iden-
tification is not required for individual areas or units of interest smaller
than resolutions cited. Thus for major land classification of forest, grass,
bare fields, agricultural crops, etc. a resolution of several hundred feet
is not satisfactory, obviously, if objectives of the survey call for
identification of separate units of land use as small as 100 feet in diameter.

2/ Some other important items essential for this application are land
classes, for which much poorer resolutions are satisfactory. See resolution
requirements for applications no. 1 and 2.
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B. Specific Applications.

1. Maior Land Classification.

Through the years information on land uses has been beneficial to

government agencies for planning purposes. As will be evident from subse-

quent discussions, accurate statistics on major land uses are essential

bases for timber and range inventories and for some other applications.

An outstanding example of the value of land use data has been the

widespread demand for the series of publications on major uses of land

and water issued at five year intervals by the Economic Research Service

of the USDA and its predecessor bureaus. The latest in this series (31)

presents, as usual, current estimates of areas, by states, of such broad

classes as croplands by major use, pasture and range, and forest land.

It also discusses trends in land uses and some important relationships

such as that of water to other uses. The preface of that publication

contains some comments which imply both the increasing detailed demands

for information on land uses and the difficulties of getting such infor-

mation. Part of that preface is quoted here: "Although data from the

various sources were classified with the objective of maintaining com-

parability with the estimates presented in previous reports...this objective

was not always attained....It is believed...that estimates in this report

and those of earlier reports are reasonably comparable at the national level

and generally comparable at the regional level....State by state estimates

are less reliable. The reader should also keep in mind that...data...do

not fully-convey the highly dispersed pattern of uses, the innumerable rela-

tionships between uses or the wide variation in land quality and intensity
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of use, particularly in relatively small areas...."

The basic reason for lack of comparability and inadequacy in

details of data is that collection of really current data on land uses

has been an expensive procedure--considering the rapidity with which

uses of land are changing. Agencies interested in such data have

used a variety of collecting methods--varying from mail canvasses and

interviews to use of aerial photography. By and large they have ob-

tained a reasonably good job for the money with available techniques.

Some indications of how varied procedures have been is that to produce

the study mentioned above, the Economic Research Service drew upon

information provided by more than a dozen different agencies to put

together a compilation. It is understandable that this compilation

exhibits data with a variety of reliability and vintage. Errors have

been unavoidable due to the wide range in vintage of data which normally

must be integrated for estimates of land classes over large geographic

areas. Even under the most favorable situations, as when aerial photo

contracts have been let to cover whole regions or states, the range

in age of data has usually been considerably greater than one year.

And for the country as a whole the range in age has been a number of

years. It may be noted that ASCS photography has been most used of

any source in land-use surveys and related surveys and that coverage

ranges up to eight years in age with an average age of three years (83).

Up to the present time there has not been a capability in aerial

photography to insure that the whole Nation could be covered within

a reasonably current period and the alternative of field work by

crews working simultaneously throughout the country has been judged

-52-



to be too expensive for nationwide surveys of land uses or similar

surveys. Several government agencies and aerial photographic firms

are now seriously considering possibilities for use of high altitude

jet aircraft for photography and other sensing on a scope that was

never really visualized until proposed by Katz (49) and by the Cornell

study (13) about two years ago.

Yet space sensing should soon contribute a substantial part of

the information needed to chart changes in major land uses in the

country. Through sequential coverage (even at intervals no shorter

than several weeks) and automatic classification using spectral sig-

natures, the space sensors should collect most of the data needed

for accurate readouts on the annual shifts in use between such broad

classes as water bodies, developed areas (e.g., cities, towns, trans-

portation networks), cropland, pasture and range, and forest land.

There are a number of favorable indications for the prospects just

discussed, including those from studies in interpretation of Apollo 9

photography (18) and interpretation of simulated space imagery (14).

The results of several studies on automatic data analysis involving

the utilization of spectral signatures for land classes also are

encouraging (56, 51, 45, 22), even though automatic procedures must

be refined before accurate operational results may be realized.

The data used for such reporting as that on annual changes in

major land uses will no doubt be only a fraction of the total land-use

data collected from space. Only part of the sequential coverages

during the year may be used--perhaps only enough to take advantage

of seasonal fluctuations in contrasts to favor interpretation. The
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readout of those coverages may also be on a representative sampling

basis. The sampling rate would, of course, be dependent on the

minimum size of reporting units. If reliable statistics were required

only for the nation and for major subdivisions such as states and no

estimates were required of land use by size class (those units of

forest 1-10 acres, 10-100 acres, etc. in size), readout of a very

small fraction of the land use identifications might suffice. Even

if, as likely, estimates were required for smaller political or re-

gional subdivisions and by size class classes of land use, it is

hardly conceivable that an enumeration of every distinct unit of land

use in the country would be merited, let alone complete annual mapping

of land uses. This does not preclude a possible requirement for

complete mapping at longer intervals (perhaps at the time of the

decennial census) showing at least generalized land use. Note that

the writer is careful to specify something "required", not "desired".

The former implies that someone is willing to finance the cost of the

survey to obtain information which is not only "interesting" but

"valuable".

It may be assumed that considerably more data on land uses should

be stored in the central bank of space data than would normally be

required on a readout for any one survey of land uses. This bank

would be an excellent source of data, not only for special localized

surveys of land use (e.g., a special survey for a political subdivision

such as a county on a directed basis) but as a historical record over

the years which could be tapped for various purposes. As will be

evident from subsequent discussions, accurate statisticson major

-54-



land uses are essential bases for efficient timber inventories, range

inventories and some other special purpose inventories. Indeed,

through space sensing, for the first time the data base on which sampling

data for various applications are expanded will be known with negligible

sampling error and without the technique errors which have plagued

technicians on resource surveys for years. Under such a procedure the

sampling error can be reduced to such a small fraction of a percent

that it may be ignored. Areas of land classes may be estimated with

as much precision as if they were being determined by the conventional

dot counting procedure which is frequently accepted as an accurate

substitute for planimetering in estimating areas delineated on maps

and aerial photographs (2, 71, 94). Precise estimates of areas would

then depend merely upon registry of sensor signatures by major land

class for each point in a pattern of sampling units over the landscape.

Calculation of acreage for each class would be by simple proportion

of sampling units in a class to total units sampled in the geographic

area being surveyed and for which the total area is known. Although

calculations might be made "on-line" for any geographic subdivisions

desired, it would be preferable to store the sensed data by small

geographic subdivisions for later retrieval and "off-line" computing

to meet user requests.

Since space sensors would register a sample of contrasting land

classes over huge geographic regions within a very short time period

(within a few weeks or months at most) there would be no question

that data were all truly current. This would minimize or eliminate

some technique errors which have been inherent in regional and
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national surveys of land uses and which have been extremely difficult

to evaluate and correct for.

In conclusion, land classification will be one of the first

earth-resources applications to be exploited by sensing from space.

By 1980 it is anticipated that data on broad land uses obtained by

cameras and optical-mechanical scanners in ERTS vehicles and tele-

metered to the ground will be used by a variety of disciplines. As

summarized in Tables 2 and 3, land classification data derived by

space sensors should comprise a large part of that needed for broad

policy planning in 1980. Since ground resolution of several hundred

feet is satisfactory, register of responses from space sensors and

identification of signatures for major land classes is estimated to

be feasible; also the frequency needed for the application (minimum

intervals of five years). Nevertheless a large part of the data needed

for major land-use planning no doubt will continue to be derived from

other sources. These data will include significant amoonts derived

by aerial sensors (especially for estimates over areas obscured by

weather from space sensors) and the kind of data that sensors cannot

collect--such as that on land ownership, on decisions between alter-

native uses and on intensity of use that land owners make.
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2. Detailed Land Classification.

Under this application are grouped a range of uses for sensing

data which the reader may prefer to identify separately as class-

ification or surveys of "soils", "vegetation", "watersheds", or "land

appraisals", etc. The writer admits to some merit in that alternative

procedure. He would only suggest that under his choice much repetitive

discussion may be eliminated since he proposes to talk to all proce-

dures which are aimed primarily at classification, delineation and

estimating acreages of various detailed classes of lands. This does

not necessarily involve production of maps of land classes--though it

may well do so.

Although the procedures presumably will provide information on

both amounts and location of areas of the land classes which are

essential components of such specific inventories as those of timber

and forage resources, they do not produce all the estimates which are

required on such inventories (i.e., estimates of volume of wood or

forage by species and condition). The areas estimated under the

"detailed land classification" application are, of course, the essen-

tial bases for expansion of details on volume, species composition,

etc. to the geographic universe of interest--region, working circle,

range allotment, etc.

A typical example of "detailed land classification" is the soil-

vegetation survey of forest and range lands in California, financed by

the state and conducted cooperatively with the U.S. Forest Service (74).

This survey aims to classify and show on maps the physical character-

istics that indicate the suitability of a unit of land for various
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possible land uses--such as for wood production, for grazing, and for

watershed protection. Contrasting units of land are classified down

to a minimum of about ten acres. On each unit the dominant vegetation

species and soil type and phase are indicated. Thus much greater

detail is obtained in this application than in application No. I.

Examples of main vegetation types that may be differentiated from basic

data obtained by the California survey are chaparral, oak woodland,

mixed conifers, redwood, sagebrush, and annual grasslands. Similar sur-

veys in other parts of the Nation might indicate the amounts and

occurrence of such types as the following: spruce-fir, pinyon-juniper,

desert shrub and lodgepole pine in the Rocky Mountains and Southwest;

oak-hickory, beech-birch-maple, and spruce-fir in the East; and long-

leaf-slash pine, shortleaf-loblolly pine and bottomland hardwoods

in the South. It is apparent that current data on locations and

amounts of such vegetation classes and associated soils are extremely

useful bases for specific inventories to determine the worth and

condition of the timber, forage, recreation and other resources of

wildlands. One indication of the importance of soil-vegetation

investigations is that the Forest Service spends about $800,000 each

year on such projects on national forests.

An important use for detailed data on present and potential

land use, or capability, is for tax assessment. For this purpose

effective use has also been made of major land classification data

which indicate where and how much cropland, timberland, grassland,

pasture land, etc., there is in an ownership. The inference may be

made that the present broad cover class is the index of suitability
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for the highest economic use of the land. Incidentally, the land

capability classification developed by the Soil Conservation Service

is one modification of land area classification. As competition for

land becomes keener naturally there is more demand for more precise

classification data on capabilities of both agricultural lands and

other lands. In effect the tax assessors and local planning offices

are interested in essentially the same breakdowns of lands as those

agencies and individuals who are doing intensive land management.

Typical examples of detailed classification of lands are in

the management planning surveys on national forests in California. A

few years ago such surveys aimed primarily at inventories of the timber

and range resources and recognized a number of area classes based

largely on the vegetation types that occupied the land. Forested land,

for example, was subdivided into approximately three dozen types

based on predominant species composition (redwood, sugar pine, white

fir, etc.) and into several stand-size, site and stocking classes

(i.e., sawtimber, saplings, well-stocked, poorly stocked, nonstocked).

Altogether there were not more than about two hundred possible separate

classes, considering the various possible combinations of type-

stocking, etc., which were recognized to be economically significant

in management of timber and range resources. In recent years, as

multiple-use management intensified, the managers became interested

in far more area classes. Some of these are subdivisions of original

timber and range classifications to indicate the health or condition

of the resource; others are classes based on soil-vegetation and other

physiographic aspects (approximating a natural ecological classification)
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which indicate capability of the land for production of various

multiple-use benefits. There are now requirements for such classes

as those showing relative stocking of desirable and undesirable trees

ti, Liiiibur stands and of trends in land use, (e.g., areas formerly in

cultivation or pasture during a previous survey but now restocking

with timber, or potential timber,or forage producing areas being

invaded by low-value brush) (87). The number of significant, separate

classes (based on combinations of elements useful to California land

managers) now runs into a four digit number--as compared to a small,

three digit number a decade or two ago. An expansion of these possibil-

ities to all fifty states gives some indication of the large number of

spectral signatures that are conceivably of value within the forest-

range universe. These are the possible signatures for extensive areas

only: such as the signatures for types where sugar pine is a predomi-

rant species. It may be noted that forest managers in California have

paid significant sums of money to determine where virtually all sugar

pines of commercial size are located on their properties, even where

that species is a minor ecological component of the type.

Atthis point a brief discussion is appropriate of the relative

merits of mapping versus sampling for determining areas of natural

vegetation. Maps of vegetation, per se, may have little value or much

value. The value depends on the specific content. A map which merely

portrays every item that may be collected by a sensing system will

probably be difficult to use. Separately, each of those items may be

"interesting", at least to a few people; but those items having economic

significance may be obscured within the welter of merely "interesting"

items. Furthermore, vegetation maps may soon become obsolete, as

-60-



compared to contour maps or geologic maps, wherever man's activities

are affecting the landscape. Before concluding that a vegetation

map is the suitable answer to a data collecting problem the question

is germane whether statistics on area classes derived from a sampling

design won't provide a more suitable answer; particularly since

statistics can be produced at far less cost than maps and are much

less likely to saturate a data handling system than map production.

Moreover, when sensor signatures are developed for detailed

land classes, such as vegetation associations, there are prospects

for greatly minimizing one kind of technique errors inherent in land

classification under today's type mapping procedures. These are errors

due to the various subjective, human judgments that are made when areas

of vegetation are classified and--quite often--delineated on maps.

The minimum size of delineated units of land class may be as small

as five or ten acres, but often much larger units are classified and

delineated separately. In many instances the mapper must subjectively

evaluate a variety of conditions over an area that must be designated

as some specific class; pure conifer, pure hardwood, a mixture of

conifer hardwood based on predominant species, etc. Yet often in nature

there are no sharp boundaries between vegetation associations, only

gradual transition zones. Thus it is well nigh impossible for a

mapper to be consistent in his judgment. And it is sheer coincidence

when two mappers delineate such variable associations identically.

It may be noted that consistency in area classification is much

easier to achieve when rather small units of land are evaluated--l/4

acre field plots, for example--since the variability of vegetation is
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correlated directly with size of area. This suggests that the proce-

dure recommended under the discussion of application no. 1, "Major

Land Classification", should be advantageous in reducing the technique

problem just mentioned: registering signatures centered on sample

units scattered over the landscape. Since each signature may be

from a small area with dimension approaching the minimum resolution

of 100 feet assumed for space sensing in 1980, the effect is analogous

to classification of 1/4-acre plots on the ground even when space

sensing is applied. This has the advantage of simplifying development

of sensor signatures, since some contrasts may be anticipated in aver-

age conditions of the respective areas surrounding any two points.

Also machine registry of a signature is more objective than human

judgment. Although this might argue for use of signatures for mapping

average conditions, an automatic type mapping technique is more

likely to saturate a data handling system than registering contrasting

signatures between sample units is.

As indicated in Table 2, "detailed land classification" is not

expected to be a straightforward space sensing technique in 1980.

Many responses may well be registered by space sensors which theore-

tically could identify some significant classes of forests and range

lands. But in the next decade there is little prospect that such

responses will be sorted out and isolated from the heterogeneous

"noise" that pervades when the gain of a sensor is turned up high

enough to register "something". During that time period almost

all responses will likely be unidentified. For example, similar re-

sponses might be obtained from such different land classes as a dry
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meadow, a fallow field, a forest plantation emerging from grassland

--even a stand of coniferous poletimber killed by fire or temporarily

defoliated by insects. It may exceed the capacity of well-funded

researchers to sortout the signatures from such similar responses

within the next decade, though by analysis of sequential coverages

identifications of at least some may well be possible.

For determining many detailed land classes (including many sub-

classes of forest based on species composition), a ground resolution

of ten feet or less may be required. Nevertheless there are reasonably

good prospects that a few subdivisions of forest will be identifiable

through space sensing by 1980. There is evidence from studies of Apollo

9 photography (18). that predominantly deciduous and predominantly

evergreen classes of forest may be differentiated on the imagery

anticipated operationally from space in another ten years. In the

Apollo 9 photos the differentiation was over the southern United States

where the hardwoods were in dormant aspect (March photography).

Furthermore, anyone with some knowledge of the physiography of the

area could deduce correctly that most of those areas of deciduous

forest were bottomland hardwoods, as distinct from upland hardwoods

such as oak-hickory.

This evidence and experience might be applied to another inter-

pretation problem in an area outside the Apollo 9 coverage--to the Blue

Mountains of eastern Oregon, for example. It might be an accurate

inference that similar contrasts between evergreen and deciduous

forests in that region and at that season would indicate predominantly

Douglas-fir and predominantly larch stands, respectively. This shows
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the discretion with which somewhat equivalent signatures should be

used. Furthermore, it demonstrates how important it is to integrate

knowledge already available with data obtained by sensing. In this

inference, effective use is made of common knowledge among Oregon

foresters that there are no appreciable stands of hardwoods in the

eastern part of the state, and that larch, a deciduous conifer, is

abundant in some areas. A further reliable inference might be made,

also, by a specialist in wildlife management. Since high proportions

of larch are found on deep ash soils in the Blue Mountains, on northern

aspects, he could deduce that in those situations vegetation valuable

as game forage would occur also as an understory associate of the

larch.

Before closing this discussion it is appropriate to emphasize

how application no. i, "major land classification", from space can

contribute indirectly for "detailed land classification". A man

charged with administering a soil-vegetation survey estimates that

the gross information that could be contributed by space sensing should

reduce his present costs of data collection; which by combined photo

interpretation and field work may range from 25 to 40 cents per gross

acre of coverage. Presently some photography is used for interpreta-

tion which is somewhat out of date since survey objectives don't

justify photography of the regions of interest each year. He estimates

that current data on gross shifts in land classes registered by the

space sensors envisaged for 1980--large landslides, agricultural

clearings in forest and major road construction developments--should

reduce present costs of data collection by about ten percent.
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In conclusion, the reader is referred to several points empha-

sized in the tables. Through the 1980 time period the bulk of the in-

formation for detailed classification of forest and range lands evi-

dently must be collected by aerial and ground techniques. A limited

but significant amount of the data needed by resource managers will

be contributed, nevertheless, by space sensors, and most of that will

be derived indirectly from that contributed to "Major Land Classifi-

cation". During the time period envisaged in this study very few

signatures of detailed land classes may be anticipated to be recognized

by space sensors.
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3. Timber Inventory.

Annual expenditures for timber inventories in the United States

by public and private agencies are considerable. One agency, the

Forest Service, spends about $2½ million each year on its Forest Survey

project and another $2 million on management plans. Most of those

expenditures are for collection of basic data and their analysis.

Kinds and details of data collected for a timber inventory vary,

depending on the specific purpose of the survey--whether for purposes

of (a) broad national or regional planning, (b) on-the-ground manage-

ment planning or (c) sales of timber. These three kinds of inventories

usually aim to provide estimates of areas, volumes, and growth and

mortality of timber. These estimates may be broken down into classes

of various kinds (based on species or quality or condition) and the

information may be keyed to locality by in-place mapping of stands.

Despite their similarities,one of these kinds--inventory for

timber sales--does not offer the opportunities for remote sensing

that the others do. One reason is because so much is usually known

about the timber when a sale is initiated that remote sensing can

contribute little if anything to the job. The seller may have reason-

ably good information about areas of commercial timber by species

types, stand conditions, etc. This is usually the situation enjoyed

by large government and industrial forest owners if their timber

management plans are reasonably current. And in the instances of

timber sales between private parties the proposed sale areas are usually

so small (perhaps only a few acres of forest) that remote sensing

efforts, such as aerial photographic projects for individual sales are
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clearly uneconomic. Even in the instances where prints of current aerial

photography may be available at insignificant expense, for example, such

aids are unlikely to meet many of the data collecting requirements on

small, individual sales. Most of the required data must necessarily be

collected by field work on the ground: to determine precise boundaries

between the sale area and other ownerships, to get details on quality of

wood in merchantable trees and (when highly valuable timber is involved)

to get accuracy of volume estimates which cannot be obtained by even the

most efficient remote sensing techniques. These latter, of course, are

the kinds of data collections which are required on individual annual

sales from large forest holdings, also, and it may be emphasized that

cruises for timber sales even on large holdings are on rather small blocks

of forest land each year. (To avoid the implication that remote sensing can

play no role in appraising timber conditions on small units of forest,

cross-reference is made to application no. 7 where there are prospects

for effective use of remote sensing to monitor even small tracts of timber

that are parts of large holdings).

For the foregoing reasons, further discussion of the "timber inven-

tory" application is confined to inventories needed for regional, state-

wide or national approaisals of the timber situation and for management

planning. In other words, each inventory is concerned with a sizable

geographic area. Seldom would a geographic area used for management plan-

ning be smaller than a hundred thousand acres, though this might be only

partly forested. It could be a million acres--the approximate size of

some working circles in the National Forest system.

in examining how remote sensing may contribute to timber inventories

it is helpful to consider the following groups of required inventory data
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in turn: (a) areas of stands or forest conditions (including logged areas),

(b) volumes, (c) growth and mortality, and (d) tree condition. Presently,

and for the near future,remote sensing appears to be an effective tool

for collection of data in the first two groups. It is becoming increasing-

ly effective in the third group but is effective to only a limited degree

in the fourth.

As background, it should be noted that although required data are

substantially the same for management planning inventories as for regional

or national surveys of the timber situation, the former must be in greater

detail. Thus kinds of data collected on sample plots may be identical

for both categories of inventories, but the required sampling intensities

differ. For example, the same definitions, specifications, and field and

office procedures are used by the Forest Service on its Nationwide Forest

Survey, on inventories for timber management planning, and on a number

of cooperative inventories with state organizations (87). At the same

time, since estimates of timber volume on a working circle may be required

to the same accuracy as that for a state-wide Forest Survey estimate, the

distribution of samples within a national forest working circle may be

much heavier than on other forest lands in the state. This is because

timber may be essentially as variable over an area of only a hundred

square miles as it is over an area of thousands of square miles in the

same region. Another significant difference is that a detailed map of

forest types and stand conditions is required within national forest work-

ing circles and only a generalized forest map is required for purposes

of Forest Survey.

(a) Areas of Stands or Forest Conditions.

During the past several decades aerial photography has proven to
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be highly effective for collection of information on such significant

timberland area classes as sawtimber, poletimber, seedlings and saplings,

recent loggings and various area breakdowns of these classes based on

species composition. The considerable literature on this subject, in-

cluding the Forestry Chapter of the Manual of Photographic Interpretation

(2), indicates that much better resolution of imagery has been preferred

for interpretation of such classes than that assumed to be available from

space by 1980. Nevertheless as sensor-signature research grows out of

its infancy it appears inevitable that poorer resolution than was former-

ly deemed satisfactory will be accepted for purposes of interpretations

of many area classes.

The first uses of sensor-signatures in operational surveys of

timberlands may be expected to be along the lines indicated previously

under discussion of applications no. I and no. 2 on land classification.

The reader is referred to those discussions for prospects, limitations

and suitable procedures which apply to the area estimating phase of

timber inventories. Areas of classes of forest are not only important

statistics in themselves; they also are the bases for all otherstatis-

tics on the timberlands. They determine the expansion factor for sample

plot data on volumes, growth and mortality. Thus any error in the

measurement of area is invariably reflected in every other expanded

statistic.

Too often under present inventory methods there is danger that

errors in technique will obscure significant trends in the timber situa-

tion. This is in the not unusual circumstance where the volume of growing

stock is gradually increasing or decreasing at a rate which may be less

than one percent annually. It is evident that even such a gradual change--
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if consistent in one direction over a decade or so--can have a significant

effect on the timber economy. It is also evident that sequential in-

ventories at intervals of five or ten years are desirable procedures to

detect such changes. Obviously the aim should be to keep sampling errors

very low on each sequential inventory (e.g., within one percent at 95%

confidence limits). Assuming that growing stock volume might actually

change more than five percent in ten years, presumably the sampling would

be accurate enough to indicate the direction of change and its magnitude.

This would not be true, necessarily, when a large geographic region (or

state) is involved because in such circumstances large, unknown errors

in technique may bias the estimate of the base on which the sampling

data are expanded. This can occur under acceptable modern procedures

when aerial photography provides an estimate of the forest area on which

samples are expanded. Due to operational difficulties, including un-

suitable photographic weather, it is not uncommon for photography over

a region to range in vintage as much as two or three years. If the

region is one exhibiting much timber cutting and activities by destructive

agents such as fire and insects, adjustments should be made in area

estimates revealed by photography to put all data in a common time frame.

Since procedures for making meaningful adjustments are so costly (e.g.,

involving considerable additional ground sampling), there is a strong

temptation to slight or ignore them. And in such an event, despite pre-

cision of survey implied by low sampling errors, the errors in technique--

which may aggregate several percent or more for two sequential inven-

tories--can obscure not only the magnitude of a trend but its direction

as well. Thus the major purpose of the inventories may be defeated. The

reader will appreciate that for policy planning it is far more important
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to determine trend in growing stock volume over time than particular

amount of growing stock in any one year. Knowledge of trends, of course,

is the essential basis for evaluating the usefulness of past forestry

programs and the needs for future programs.

Sensing from space can make important contributions to the area

estimating phase of timber inventory by reducing technique errors due to

variability in imagery and by synoptic overviews providing current,

comparable data for huge geographic regions. Those synoptic overviews

will also simplify classification of data by using spectral signatures

and other quantifiable criteria, thereby making the analysis of imagery

less subjective. In effect, sensing from space offers the first oppor-

tunity for making straightforward, accurate estimates of area parameters

without the costs which have been considered prohibitive in the past.

Until operational tests are made there is no assurance that future costs

will be less than those now expended on the most reliable present in-

ventory methods (those still subject to significant technique errors).

Judgments by several experienced inventory specialists, however, indicate

that some cost savings may be made through surveys which combine data

sensed from space with data collected by aerial and ground techniques--

in the kind of survey that will insure reliable area statistics. These

judgments show that savings can be made in present costs of data

collection on large inventory projects--such as that of the Nationwide

Forest Survey Project. The total costs of all phases of inventory

(including reporting and administration) average about 4.5¢ per commer-

cial forest acre covered. Approximately ten percent--about 0.5¢ per

acre--is spent on area estimating. Perhaps twenty percent of that half

a cent might be saved through use of space sensed data. Thus the
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potential saving by 1980 might be 0.1 cent per acre.

Now a tenth of a cent per commercial forest acre doesn't appear

to be much, but it Is more impressive when expanded over the average

annual coverage by the Nationwide Forest Survey and management plan

inventories. Presently the Survey is on a reinventory schedule averag-

ing about ten years throughout the country, but there is considerable

pressure to shorten that cycle to about 5 years in the most active timber

producing areas and hold to a cycle of about 10 years in other areas.

Assuming a more ideal average cycle of 72 years, the average annual

coverage would be around 70 million commercial forest acres. Some

management plan inventories are so closely coordinated with the Survey

that they may be considered to be included in that figure. Other manage-

ment planning inventories on federal, state and large industrial hold-

ings cover an additional 25 or 30 million acres annually. A tenth of

a cent an acre applied to an annual coverage of a hundred million acres

indicates a possible annual saving of about $100,000 through use of

space sensed data. Furthermore, regardless of cost savings, use of

space sensed data should improve reliability of area estimates.

(b) Timber Volumes.

For some years photographic interpretation has been used for strati-

fication of forest into timber stand classes which individually are less

variable in volume than the universe for which they form collective

parts. When field samples are stratified by these classes any desired

accuracy of estimate may be achieved, of course, with fewer samples than

if the sampling were unstratified within the same universe. Applications

of the method have been described in a number of publications including
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the Manual of Photographic Interpretation (2) and the Forestry Handbook

(71).

Applied judiciously, stratified sampling can significantly improve

efficiency of surveys, but the techniques must be tailored to the par-

ticular survey objectives and to the universe scheduled for inventory.

In regions where the forest is relatively homogeneous,only very limited

stratification may be desirable, perhaps separation only into a couple

or three classes. Even in regions where there is wide variability in

timber stands care must be taken to avoid stratification in detail

which exceeds the point of diminishing returns. There may be a tempta-

tion to overstratify for volume sampling merely because it is useful to

identify many different stand classes for descriptive or other purposes.

For example, in an inventory for management planning, it may be useful

to recognize such different classes as pine sawtimber, pine poletimber,

fir sawtimber, fir poletimber, etc., each by open, medium and dense

stand densities. This does not mean that it is profitable to stratify

field samples for determining average stand volumes in the working circle

by each descriptive, detailed stand class. Stratification, of course,

should be designed to separate the classes which exhibit significant

differences in volume variability. Thus if the variances of growing

stock volume are approximately the same for open pine sawtimber, medium

dense fir sawtimber and dense poletimber regardless of species composi-

tion, all those classes might effectively be combined into one stratum

when estimating total volume of growing stock. This might be defined

as a "medium volume" stratum. It is possible that all other stands in

the working circle might be grouped into two other strata based on

similarities of volume variances: a "heavy" and "light" stratum,
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respectively. In this instance the total volume of growing stock in the

working circle might efficiently be estimated by allocating field samples

W;ith -the heaest int-ncsity, obvious,c , to the I"heavy"I volume stratum

The volume of growing stock on which allowable cut depends would simply

be estimated by Ah.gh + Am.vm + Al.;l, where Ah, Am, Al, represent total

acreages of heavy, medium and light volume stands, respectively; and

vh, vm, vl, represent average volumes per acre in those respective strata.

Although not used in calculating the total allowable cut, volume estimates

might be required and calculated from field plot data for various break-

downs (e.g., major and minor species by stand-size class), just as

acreage statistics might be required and compiled for the various de-

tailed descriptive stand classes which might also be delineated on maps,

for use in management planning and in resource management.

The writer has never heard of an efficient timber inventory where

the sampling strata exceeded a dozen, and a number of effective in-

ventories for regional or management plan surveys have used no more

than half a dozen strata or have used multi-stage sampling which can

be a very effective technique for reducing field work.

There is increasing interest in two-stage, or double sampling, and

three-stage sampling for use in timber inventories (30, 46, 50, 72).

These multi-stage sampling techniques can make the application of remote

sensing very effective as has been demonstrated on a number of inven-

tory projects including those of the Nationwide Forest Survey. That

project has used aerial photography with double sampling on a number of

regional inventories and with three-stage sampling to survey the vast

interior forests of Alaska--a region containing.one seventh of the for-

est land in the Nation (95).
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A variation of multi-stage sampling was recently tested by the

Pacific Southwest Forest and Range Experiment Station (52). This in-

corporated the theory of probability sampling for volume and used the

Apollo 9 photography for the first sampling stage. The sampling was

in five stages--using several scales of photography to orient the field

samples into the timber stands with heaviest volumes. That test pro-

vided an indication of how useful even rather crude imagery from space

will be. This is a pioneer example of five-stage sampling in timber

inventories and the first test of sensing from space for this applica-

tion. A follow-up benefit-cost study should provide indications of

how many sampling stages may be used before the point of diminishing

returns is reached. Just as stratified sampling requires some invest-

ment in every stratum, so does multi-stage sampling require an invest-

ment at every stage. The total investment must be less than with other

methodologies; otherwise potential users-will naturally prefer a less

complicated method.

With respect to volume estimating, the contribution to consistent,

current estimates on gross areas--such as area of the major land class

of forest--is in effect the greatest single contribution that may be

expected from space sensors in the near future. This will be along lines

indicated previously. Most of the data for volume estimating will con-

tinue to be obtained (as now) from aerial and ground methods, Those

data are details of timber which cannot be resolved by the space sensors

of the '80's or details masked from any remote sensing.

(c) Growth and Mortality.

None of the standard books on forest photo interpretation or inven-

tory (71, 72, 73, 5, 2) devotes any particular attention to techniques
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by which estimates may be made of growth of timber by photo interpreta-

tion. This reinforces an outlook for the near future that remote sensing

will not contribute appreciably to dala collection on timber growth.

Significant benefits from sensing in estimation of mortality (particu-

larly stands) are more appropriately discussed under other groups of

applications. Under application no. 8, "Detecting stresses...",

the prospects for sensing dying or sick stands of trees (where growth

is curtailed)are analyzed. Under application no. 15, "Evaluating damage

.,, use of sensing to estimate stand mortality by cause is discussed;

and under application no. 7, the monitoring of gradual impacts on growth

of timber are discussed. At this point the writer would merely observe

that remote sensing (where the sensor is more than a few feet away from

the object being sensed) does not appear to be an effective technique

for evaluating growth and mortality of individual forest trees. To esti-

mate rate of growth of sound wood and cull increment in individual trees

and to determine specific time and cause of death of individual trees,

work on the ground is the only practicable procedure.

(d) Tree Condition.

This phase of inventory is closely related to the preceding; for

the growth rate and age of a tree are two aspects of its condition.

More is involved, however. A tree may be healthy and putting on rapid

growth, yet is may not necessarily be a desirable tree to the forest

manager. Its wood may be of such inferior quality that it should be re-

moved to provide growing space for a tree with better market prospects.

To give the modern forest manager a useful inventory, an appreciable

amount of time is spent by field men in appraising the various aspects
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of condition of an individual tree. And the tallies they make may

identify whether a tree is "dominant" or "suppressed", is "desirable"

or "undesirable", and also indicate the quality of wood in its stem.

Since individual trees cannot be resolved on space imagery, such data

are not amenable to collection by remote sensing from space. On aerial

imagery which does resolve individual trees it may be possible to de-

termine whether or not a tree is healthy, but the other aspects of tree

condition mentioned above are almost never determinable except by direct

on-the-ground observation. That is a good reason why there is no pros-

pect for eliminating field plots on timber inventories. This outlook

should caution those who would design inventories exclusively to re-

quirements for volume estimation, and perhaps skimp on field plots

needed to get other important data besides those on stand volumes.

As shown in Table 1, sensing from space should contribute sub-

stantially to the timber inventory application by 1980. The contribu-

tion will be primarily, yet indirectly, through application no. 1 on

land classification. Information on land classes should permit an

accurate estimate of the data base for inventories--the area of commer-

cial forest land--whenever it is needed. Synoptic cover from space and

matching of spectral signatures should provide that estimate with only

minimum supplementing from other data collecting systems--on occasions

where cloud cover precludes obtaining data from space sensors and to

adjust questionable identification of commercial forest. Furthermore,

use of sequential coverages from space and comparisons of signatures

at sample locations for different years should provide rapid, accurate

measures of trends in forest areas. These advantages in area estimating
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will accrue in the timber volume phase of inventories also to the degree

that theyexpedite such sound statistical techniques as stratified and

multi-stage sampling. The prospects are negligible that by 1980 remote

sensing from space will be of assistance in another phase of inventories:

that of evaluating tree conditions, although some evaluation of timber

stand conditions by this means may be possible. In the other main phase--

growth and mortality estimating--space sensing will contribute only in

aspects which are more appropriately discussed under applications nos. 7,

8 and 15. To conclude, most data collected for timber inventory in 1980

will be by ground work and aerial photography, since many items of data

amenable to sensing cannot be identified with resolutions poorer than

several feet. Yet even the limited, gross information about forest

areas that can be obtained by remote sensing from spacecraft should prove

to be extremely valuable because of its accuracy and timeliness.
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4. Range Inventory.

A primary aim of this application is to determine the long-term

trends of amount, kind and condition of forage on public land grazing

allotments.

An inventory of the range is the most time consuming and costly

part of the range analysis and management planning scheduled on each

grazing allotment at 5 to 10 year intervals (85). The rewards of exploit-

ing sensing in this field may be substantial in two respects. In the

first respect, the gross data on land classes anticipated from space

may well provide the bases for the first reliable estimate of the over-

all acreage on which the grazing of range livestock and big game in the

United States depends. The writer found no one who would venture to

underwrite the reliability of any of several estimates that have been

made of this acreage. The best approximation of a current figure appears

to be that in USDA Ag. Econ. Report no. 149 (31) which showed the combined

total in "grassland pasture and range" and "forest land pasture and

range" to be 865 million acres in 1964. In the second respect, range

inventories are costly, partly due to the isolated locations of many

ranges. Some have been programmed at 5 cents or more per gross acre.

Thus to get reliability of information never before deemed feasible and

to aim at reducing costs of survey, there appears justification for

increased application of sensing in range inventories.

Four main groups of data collected on a range inventory are that on

(a) major vegetation associations, (b) suitability class (most productive

and less productive), (c) vegetation condition, and (d) soil condition.

The first two classes comprise data on gross features which might be
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classified and delineated by sensing even when ground resolution is no

better than several hundred feet. Currently some of these data are

obtained by photographic interpretation (2). The vegetation types in

group "a" are, of course, the same land classes and main subclasses that

are differentiated under application no. 1 and 2 on "land classification",

grassland, forest, brush or sagebrush, for example. The data in group

"b" on suitability class relate to the accessibility of an area, whether

it contains forage and, if so, whether it may be grazed without hazard

to other resource values such as those for watershed protection and re-

creation. Some of those items (e.g., on accessibility) may be effectively

obtained by sensing techniques; others may not. For instance, some rather

heavily timbered areas boast an understory of forage. This item

probably will not be sensed except possibly indirectly if the sensor

can identify a timber type that positively indicates forage in the

understory.

Studies of the Apollo 9 photography and other recent investigations

have indicated that some portion of the data required in range inventory

groups "a" and "b" can probably be picked up by space sensors by 1980

(21, 18, 11, 12); essentially the data derived indirectly from the

application of "Major Land Classification" as indicated in Table 1 and

an accompanying footnote. Other needed data undoubtedly will be

obtained at the same time period from airborne sensors--primarily in

the form of photography, but possibly in the form of thermal imagery

to define some significant boundaries between moisture regimes.

Since the data in group "c" arevery detailed or minute, the prospect

is that remote sensing will play only a limited role in their collection.

A few items, such as amount of forage cover, are amenable to such collection.
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But even here the range manager is concerned with the distribution,

relative dominance and palatability of a wide variety of plants--many

very small,requiring ground resolution no poorer than a few inches for

identification. Much of these data can only be obtained on the ground

through tallies of field samples. The data in group "d", on soil, are

partly amenable to interpretation by aerial sensing; some of the

obviously contrasting boundaries between very rocky soils and other

soils, for example. But here, also, some details such as susceptibility

to erosion and soil depth are marginal decisions, at best, for a remote

sensor and are decisions easily made by the field man at the time he

is tallying data in group "c". There is a challenge for further research

to determine how far the role of sensing may be applied to collection

of data on condition of range vegetation and soils. Perhaps the best

opportunities for use of sensors in this field will be through techniques

of multi-stage sampling where ground plots are integral parts of the

procedure. Yet sampling by sensor can also contribute.

In conclusion, as indicated in Table 3, it is anticipated that a

small amount of information will be collected from space sensors by

1980 in range inventory. However, most of the information for that

application will continue to be collected by other methods. In viewing

those prospects and in speculating further into the future it appears

that obstacles to sensing from space are greater in this application

than in many others, because much data required to be collected on range

inventories are so detailed. Remote sensing can also play an important

role in monitoring temporal changes in the range, as discussed under

applications no. 7 and 8 ("Monitoring...management units" and Detecting...

stresses....'").
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5. Inventory of Wildlife Habitat.

Data requirements for an inventory of big game habitat are similar

to those for range inventory. Yet for many habitat studies, wildlife

specialists (as compared to game managers) often focus on detailed

features of the landscape: a particular stretch of stream a narrow

stringer of brush, or a thicket. They tend to concentrate often on the

interfaces between,rather than on the gross areas of, forest and grass-

land. These differences, and the fact that two distinctive classes of

ultimate users are interested in domestic livestock and in game, respec-

tively, are the reasons for discussing "range" and 'wildlife" habitat

applications separately.

One indication of the importance of inventories of wildlife habitat

is that the Forest Service spends nearly a million dollars a year on

such inventories and associated management planning. Most of this

expense is for data collection. Nevertheless wildlife specialists say

that present funding does not permit the frequency of surveys that is

needed to determine trends soon enough for corrective measures--for all

the land and waters within national forests where wildlife management is

needed. An adequate survey of fish habitat, for example, costs about

$10 per acre on lakes and about $50 per linear mile of stream. The

estimated total of lakes and reservoirs within national forests is 2.1

million acres and there are estimated to be 83,000 miles of streams within

national forests.

Assuming the maximum tolerable interval between surveys (10 years,

as shown in Table 2), an inventory of fish habitats alone would require

about two and a half times the current annual expenditures for surveys
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of all habitats on national forests.

Benefits from habitat inventories and the management measures

dependent upon them are substantial, as indicated by one study of water-

fowl habitat on a national forest in Minnesota (84). There the benefit-

cost ratio was determined to be more than five to one. In other instances

the benefit-cost ratios have been even higher, as in Alaska where certain

fish habitat improvements gave a ratio of benefits to costs in the

magnitude of 30 to 1.

Zones where wildlife is the major land resource are diminishing,

in contrast to the zones for general outdoor recreation, and the broad

environmental zones most suitable for management of some important

wildlife, such as big game, are already well known. Although this suggests

restricted opportunities for remote sensing, large amounts of data are

needed for many variations of habitat inventory (see Table 3). Some

of these data will no doubt be collected by ground methods, but a sub-

stantial amount can be collected by aerial sensing if the quality (in-

cluding ground resolution of details no more than several inches in

diameter) is good enough. Also the potential for increased use of remote

sensors in this field is great if for no other reason than that they have

been exploited relatively little in past inventories of wildlife habitat.

The writer recognizes that excellent use has been made of aerial photo-

graphy in some surveys of wildlife habitat,as has been pointed out in

Chapter 8 of the Manual of Photographic Interpretation (2). The relative

infrequency of such applications may be inferred, though, from that

publication, since most of the chapter on wildlife management is devoted

not to surveys of habitat but of wildlife itself. (That important use
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of sensing is discussed later under application 16, "Monitoring Livestock

and Wildlife").

In some wildlife habitats aerially sensed data might be very useful

on a sequential basis for problem solving. One problem example is the

apparent decrease in aspen, an important browse for elk and deer, in

Yellowstone Park and in other areas in the Rockies. Another problem,

also in the Rockies, is the evident decrease in meadows due to invasion

by conifers. Sequential sensing no doubt could contribute data on trend

and rate of change in the vegetation and moisture stresses that would

be helpful in evaluating these problems. Even sequential space imagery

of rather poor resolution may be useful in appraising habitat of wild-

life affected by large fluctuations in water levels--nesting and resting

grounds of waterfowl, for example.

Another promising use for imagery from space was pointed out to the

writer by R.S. Driscoll of the Rocky Mountain Forest and Range Experiment

Station. By imaging the relative abundance of "desert bloom" in the

Southwest, which is an index of quail population, space sensing could

provide an annual forecast useful both to wildlife managers and to hunters.

In conclusion, for inventory of wildlife habitat in the near future,

aerial sensing (with cameras to provide details on the vegetation and

thermal sensors to provide information on the moisture regime) will be

useful just as for range inventory. Resurveys will be needed at intervals

of perhaps 1 to 10 years to measure trends. Just as in range inventory,

a number of details--on vegetation condition, amount of browsing, etc.

must be obtained through field work on the ground coordinated with aerial

sensing in a multi-stage sampling mode or by stratified sampling.
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As indicated in the tables, some contributions to wildlife habitat

inventories are anticipated from space sensors by the 1980 time period.

These contributions are not expected to be as great as those to range

inventories for several reasons: (a) many features of particular inter-

est in wildlife management that might be identified by space sensing are

already charted--major water bodies, for example; (b) in many variations

of wildlife habitat application there is focus on detailed landscape

features (requiring resolutions no poorer than several feet); and (c)

there evidently is much less need for inventory of wildlife habitat than

for that of livestock habitat in foreign countries (see Section VI).

In closing this discussion, cross reference is made to another

application (aside from no. 16 mentioned above) that can make a sig-

nificant contribution to wildlife management. That is application no. 7,

"Monitoring Large Management Units". As will be noted later, wherever

application no. 7 is initiated on a management unit it should be an

effective substitute for no. 5.
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6. Recreation Resource Inventory.

Since recreation is the most rapidly expanding use for forests and

range lands in the United States, it might be infere' Lhat recreation

resource inventory is a fruitful field for remote sensing. The rela-

tions of forests, meadows, rugged wastelands and main lakes and streams

provided by synoptic views from space should be useful to the planners

who are looking for undeveloped locations with good recreation potential.

Yet in this country a great deal is already known about the broad zones

most suitable for recreation developments. They have been highlighted

over the years by reports from pioneering recreationists who explored

them on foot and on horseback, by surveys which may have been aimed

primarily at inventorying and developing other resources such as timber

and forage, and by an extensive National Recreation Resource Review of

about a decade ago (66). Furthermore, in the United States planners

and developers of potential outdoor recreation sites may not be particu-

larly interested in estimates of areas of various classes of land within

a recreation zone. Who really cares, for example, how much of the Teton

National Park or Yellowstone is in forest or grassland or barren rocks?

It is enough to know that they comprise interesting patterns of landscape.

And by the same token what is the intrinsic value of a vertical photograph

from air or space that flattens into insignificance the spectacular

visual resource of the Tetons? That is a scene captured far better on

snapshots by tourists.

There is an intermediate stage of planning, however, when remote

sensing may provide timely information obtainable in no other way. This

is when decisions are being approached on choice of alternative zones
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and/or boundaries for new recreation developments. Since those decisions

usually mean losses in other wildland values that may vary by alternative

choices for recreation, the data on all land resources are useful.

Recent examples of such situations occurred in the Cascades of the Pacific

Northwest when withdrawals of large acreages of national forest timber-

land for recreation purposes were being considered. If current land

classification data telemetered from space sensors had been available

for rapid compilation into various geographic configurations, many

feverish man days of compiling could have been eliminated. Another

solution with considerable merit in such situations would be aerial sensing

from high altitudes directed at large zones of interest. The answers

might not be derived as quickly as from a bank of space sensed data but

the sensing could be tailored to give more specific answers to meet

objectives.

Use of sensors to obtain data for recreation planning is bound to

increase as all phases of land planning increase. A recent co-operative

study by the Pacific Southwest Forest and Range Exper. Sta. and the

Department of Landscape Architecture of the Univ. of California suggests

how useful photography can be in bringing out interrelationships in

the landscape (57). One aspect of recreation planning emphasized in

that study is recognition of the scenic resources as they will be viewed

by most forest visitors. Ideally, analysis of these resources should be

based on views from routes (such as highways) over which the forest

visitors travel. In the planning stages, however, when one of the

problems is to determine optimum locations for highways, trails and over-

looks, it is obvious that aerial photography offers the most feasible

-87-



medium for analysis of the scenery. Not only can aerial photography ex-

peditiously and accurately portray the various scenic patterns of the

landscape, it can by stereoscopic imagery indicate enfilades and defilades

in views from any ground vantage points the planners desire. Stereoscopic

imagery from space might serve this same purpose, but to a more limited

degree, since three-dimensional resolution is less from space than from

lower altitudes.

The main collecting requirements on recreation resource inventories

are for detailed data on specific, local sites (where ground resolutions

no poorer than ten feet are required). Collectively, these sites may

constitute less than one percent of the recreation zone forming the visual

backdrop for the outdoor visitors who recreate mainly at developed sites.

A study made several years ago by the PSWF&RES of the U.S. Forest Service

(3) emphasized how localized developments may be, even where recreation

is fully exploited and favored over other forest uses. The study indi-

cated that full recreation use of three national forests in California

would divert less than a third of the land from timber production on

one forest and would divert only slightly more than ten percent of such

land on the other two forests.

The kinds of detailed inventories necessary to plan developments

at these localized sites are not those where remote sensing provides

much opportunity for cost saving. Many man hours of ground work apparently

are required, regardless, to carefully appraise immediate sources of water

and provide for its distribution; to survey the microrelief and soil; and

determine specific locations of service roads, hardstands, buildings,

tables, fireplaces, lavatories and other developments.
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In conclusion, as indicated in Table 3, space sensing is expected

to provide a small amount of information needed for recreation resource

inventories by 1980. This will be essentially data on extent and rela-

tionships of major land uses (derived through application no. 1).

Aerial sensing should provide more information. However ground surveys

no doubt will provide most of the information needed for recreation plans,

since the most effort in this application is devoted to collection of

details at very localized sites. Remote sensing can play a role in

locating these sites but hardly the primary one. One prime determinant

for recreation sites, of course, pertains to the preferences of people--

where they like to go and what they like to do. Recently recreation

planners have been giving much attention to such sociological data.

Presumably the collection of such data will be an important part of

recreation resource inventories in the future: the kind of data which

remote sensing has no capability for collecting.

Cross reference is appropriate here to application no. 5, "Inventory

of Wildlife Habitat" and application no. 16, "Monitoring Livestock and

Wildlife", where sensing applications of interest to hunters and fish-

ermen are discussed; also to application no. 7, "Monitoring Large

Management Units". An important phase of that application may well be

the monitoring of use at developed recreation sites.
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7. Monitoring Large Management Units.

From one viewpoint this monitoring application is a large group

of applications, in that a variety of data are collected which span

the breadth of the forestry and range disciplines. But since the data

are used in every day, multiple-use management, often in integrated

fashion, and there are common requirements for quality and frequency

of sensing,it is desirable to treat this as one application. Its broad

objective is to collect data indicating trends in conditions on a geo-

graphic management unit such as a working circle or national forest.

The information derived from analysis of those data is used to evaluate

how vell management is being performed and to correct weaknesses in the

resource situation through management action.

This application is analogous to the inspections that administra-

tors and managers now make of their properties. This has a great advantage

over current inspection procedures since it will insure continuity,

frequency and scope of inspections that is not possible by overworked,

specialized manpower alone. At the same time it brings to bear a combi-

nation of technology and human judgment in the analysis of problems that

is not exhibited in any other sensing application in the forestry and

range disciplines.

Optimum application is dependent on using sensor signatures as an

integral part of data handling. Otherwise there is no consistent,

efficient way to compare the resource situation at one time period with

that at another and thus determine whether there have been significant

changes in the resource over time.

More than any other, this application gets down to the everyday
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use of sensor outputs. To meet frequency and resolution requirements

the cost will be high. Therefore the application should be considered

only in regions where there is considerable forestry and range activity

and where resource values are high. Furthermore, effective use cannot

be made of the sensor output unless some agency or group of land owners

controls management on the predominant part of the geographic universe

being sensed. These considerations argue for exclusion of some large

forest regions of the United States; such as interior Alaska where there

is relatively little activity or immediate prospects for it and where

forest values are low. In some regions as in the South, where forest

values are high, there may be difficulties in application due to broken

patterns of ownership. More logical, immediate regional choices are the

Pacific Northwest, California and the Rocky Mountain states where federal

agencies control large blocks of real estate. Hopefully, the application

might be adopted over all the mountainous areas of the western continental

United States in the not distant future. As a minimum the geographic

area for initiating such an application should be thousands of square

miles, to keep unit costs of sensing to a reasonable figure and to insure

reasonable efficiency in analysis of management data.

As an example, consider the southern half of the Oregon Cascades,

embracing an area of some 10,000 square miles or more. This includes

lands administered mainly by federal agencies; primarily the national

forests but some national park lands and lands managed by the Bureau of

Land Management. All federal agencies in the region, with opportunity

for coordinated management and protection actions, might choose to

cooperate in a system of monitoring sensing for management. They might
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also make cooperative agreements with the owners of large forest industrial

holdings in that region. As a beginning, the Forest Service might initiate

the system on the group of national forests in southwestern Oregon.

Regardless, here is a chunk of real estate managed essentially by one

agency or a small group of cooperating agencies. On this geographic

unit there is a lot of business every year. Loggers are cutting timber

and trees are being planted in many locations; cattle and sheep are being

grazed along with intermingled wildlife. The campgrounds are many and

loaded with people in summer. There are many roads and trails and many

more are being built each year. There are a number of lakes and re-

servoirs--large and small--and other impoundments for water are under

construction or scheduled. Yet, there is still a lot of country un-

touched by those developments.

Obviously the demands on that area for management and protection

are many, varied and unceasing. And those demands are on the increase,

severely testing the staff of the organization. If remote sensing offers

services of value to the forestry and range disciplines this may be

the opportunity to capitalize on it. To take advantage of this oppor-

tunity, however, may be beyond the capacity of any commercial sensing

organization in the world today. For what management needs is initial

coverage by photography over the whole area within a matter of minutes

to give imagery of uniform quality with ground resolution of objects

ten feet or more in diameter where contrast is good (5:1 or better).

Possibly some thermal imagery is needed also. If this initial goal is

achieved the management may be reasonably assured that sequential coverage

to the same specifications can be accomplished at whatever intervals are

-92-



preferred. (As indicated in Table 2 the required frequency of applica-

tion is biweekly during the growing season. This is an approximate

interval which is dictated by the rate of change on the most rapidly

changing,major aspects of the resource. In southern Oregon in an average

growing season approximately ten, sequential, biweekly coverages

might be required).

Lest these appear to be unreasonable specifications, since no

organizations may be prepared to meet them at this writing, it may be

pointed out that almost inevitably at least one commercial survey or-

ganization will have this capability within the next few years, if for

no other reason than to meet prospective requirements in the agriculture

discipline. This kind of capability is the one discussed and proposed

for development in the near future by a number of people and most

explicitly was recommended in a study by Katz (49) and in the report in

1967 by the Cornell Center for Aerial Photographic Studies (13). This

envisages using a jet aircraft flying at about 40,000 feet or higher,

similar to the modified 707 now sensing for the Air Force. That is

loaded with several kinds of sensors. Incidentally, a Lear jet, now in

commercial use, might approach the desired capability, yet its range and

capacity would be marginal. The imagery from such a sensing operation

would have much better resolution than any anticipated from space in the

near future but it would approximate the synoptic quality of space

imagery in that there would be uniformity in tones not possible when

coverage has significant temporal variation.

It may be emphasized that there must be some tradeoff between size

of region covered by one sensing flight and the elapsed time for that

flight. Recognizing that the matter merits more and better study than
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he can give it, the writer merely suggests that the elapsed time might

be restricted to no more than an hour.

Looking ahead, assume that a sensing system for application no. 7

has been in operation over southwestern Oregon for several years. The

resource managers are now familiar with the signatures which identify

some main land classes and with the normal changes in signatures over

time on those parts of the forest where change is relatively rapid.

But they must still rely on their eyeballs to interpret most changes in

sequential coverages. They do this on the console display system which

rapidly produces images of correlated,multispectral views and comparative,

sequential coverages. Some staff members, including the timber and range

specialists, observe a series of sample areas that comprise representa-

tive samples of the forest and range lands. These "permanent" observation

plots give them an unbiased cross-section of conditions. Hopefully,

the signatures and imagery will record such changes as a plantation of

seedlings emerging from the grassland into saplings,and a sapling stand

thickening into poletimber, and--more strikingly--the sudden changes

ona hillside when a stand is cut or the retreat of the snowline up the

hillside with the advance of Spring. Highlights of the sensing through

a season might be as follows.

The retreat of the snowline as recorded by the first sequential

coverages of the year attracts the attention of every staff man in head-

quarters: the forest engineer, the specialists in timber management, range,

hydrology and watershed management, and recreation planning. For as the

snowline retreats their opportunities for seasonal field work expand.

The specialist in hydrology naturally has a priority interest in the
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snow melt. Early in the season he virtually monopolizes the console

displays, studying the imagery of snow patterns, even though he knows

by heart the latest digital readings showing area estimates of the

snow cover and rate of melt for several districts in southern Oregon.

There isn't much question about the area parameter, which sensors could

measure accurately, but there are other parameters not so easily measured.

(Ed. note: For more on predictions of runoff, the reader is referred

to application no. 14, "Monitoring Snowfields". It may be noted, though,

that whereever there is a sensing system for the comprehensive monitoring

of application no. 7, the requirements may be met for application no. 14.

And eventually, if all geographic units in the western mountains are

covered by no. 7 there may be no need for application no. 14.)

As the season advances the other specialists spend more time studying

the sensing output. The range specialist watches the rate of pheno-

logical development of the vegetation to determine the optimum time for

opening allotments to grazing and the man in charge of fire control also

follows that development with a great deal of interest. He knows from

basic statistics on land use (such as obtained in application no. 2)

the relative importance of and distribution of the various vegetation

associations and their ranking with respect to fire hazard. This is

a situation that changes only slowly from year to year in the aggregate.

And local changes in distribution of hazardous fuel types can be adjusted

as appropriate, by comparing the last sequential coverage each season

with that from the year before. Those are changes such as the increase

or decrease in annual grasslands containing flash fuels and the changes

in recent cutovers that might contribute to an increase or decrease in
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fire hazard due to logging slash. Early in the season the fire staff

specialist is most interested in how rapidly the vegetation is developing

to 3 s t- o fla .mabil:ty, as an inuex for Lhe date to man the seasonal

fire organization. After that date, and up to the time in the fall when

he uses the sensing data as an aid to judging when to discontinue that

staffing, he will be more interested in the information on fire weather

procured by application no. 9 and in the fire detection and mapping

applications.

During the summer the recreation specialist and forest engineer go

into frequent huddles as they watch the pattern of signatures change on

some recreation areas. Sometimes they will take prompt action after

those huddles to divert the traffic of forest visitors away from sites

where the monitor reveals the vegetation is suffering and into areas

where the monitor confirms that there is lots of healthy greenery.

The timber management specialist probably spends more time than

any other staff man in studying the sensing output during the summer,

beginning shortly after the roads are opened for logging. He looks

particularly for any differences in the normal sequence of signatures

in localities where current logging is underway. Whenever there is

something different, he confers with another staff man--the engineer or

watershed specialist, perhaps--anticipating that there might be some

deviation from good practice in road construction or in slash disposal.

And a field trip may be scheduled to the location in question. Some-

times the trip will reveal' that the difference is due merely to a random

variation of the normal pattern. Possibly an unusual topographic situa-

tion or variation in ground cover has caused a deviation from a "typical"
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signature, but he doesn't begrudge the time he takes for that field

check as he recalls the countless hours he has spent on the ground trying

to find the problem localities before the sensor was available to narrow

down the zones for checking. On some field trips, though, he finds

something that calls for management action. It may be an unforeseen

development calling for an improvement in management policy; it may be

a noncompliance with timber sale regulations which he brings to the

attention of the logging operator.

Near the end of the growing season the range specialist again

takes particular note of the readout and imagery on phenological develop-

ment preparatory to closing the grazing allotments. The staff men charged

with pest control also spend considerable time studying the data. Not

only are they interested in the sequential data for the current season

but often they come to the console requesting data on previous seasons,

trying to pinpoint areas where the sequence of signatures doesn't fit

the pattern expected in healthy stands. This requires the most sophisti-

cated interpretation effort of any, considering the large number of

variables in the forest population in terms of species composition,

stand ages, and topographic situations and site. And even when there

is a strong indication of an unhealthy situation it is by no means

clearly evident whether the stress is serious. It may be temporary due

to moisture stress in an abnormal season or to some disease or insect

not permanently crippling. But it could also be an indication of a

developing, killing epidemic or insidious air pollution. Therefore

some problem localities are earmarked by pest specialists and scheduled

for field checks. In some instances there have been field reports that
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an endemic forest pest is increasing, and the sensing gives a better

measure of the magnitude of the threat.

Naturaily the tiiibur management specialist coordinates closely

with the experts in forest pests and much of that coordination is to

appraise progress of plantations. For example, it is probable that one

day they question the condition of the plantation of pine on Bear Mountain,

a relatively inaccesible area, and together they study all the digital

readout for that locality that has been obtained during the past several

years. In so doing, they select sequential pictures as well. They also

put the pictures of another locality on the console for comparison--

that of the plantation on Brushy Knob of the same species and age.

That one the timber management specialist knows is healthy. He visited

it only last week and that comparison reassures them about the plantings

on Bear Mountain.

There must be some careful preparations before the foregoing

projection can become an effective reality. The application requires a

good data base with geodetic positioning of detailed land classes equiva-

lent to those discussed under application no. 2. These classes must be

identified by locality through a reference system such as geographic

coordinates or the standard state reference grid printed on USGS maps.

The application also requires an efficient data handling system. If

the application were to be initiated by the time a commercial concern

offers an aerial platform capable of delivering the required sensing,

that might be no more than two or three years away. Provided the geo-

graphic locality were similar to that used in the example discussed

previously and the agency were the Forest Service, it is not unlikely
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that a data handling capability could be developed in the same time span.

There is some encouraging research aimed at automating the handling of

data sensed over forest and range lands--such as the work by Langley at

the PSWF&RES on his Wildland Resources Information System (86) and the

work by Lent (56) and others at the Forestry Remote Sensing Laboratory,

University of California.

One phase of that kind of research is to establish sensor signatures,

and much more effort is needed on that phase. As long as the overwhelming

bulk of data interpretation is done by humans any system for handling

masses of data i's greatly handicapped. It is evident that until a con-

siderable number of sensor signatures are developed--subject to rapid

identification by humans, if not necessarily by machines--the monitoring

of large management units is economically questionable.

Annual costs of photography alone for the 10,000 square mile Oregon

example may be no less than $200,000 (at $20 per square mile). That is

based on efficient jet operation at about 40,000 feet above the terrain

where there is no great air traffic problem. Also it assumes complete

coverage but with small-scale imagery (1:80,000 or smaller) which could

be obtained in a very few passes, and that there would be about ten,

complete,sequential coverages per year. It may be assumed added costs

for data handling would be at least double those for sensing.

A minimum investment of forty dollars per square mile or about

60¢ per acre each year is not to be made without some prospect of sub-

stantial continuing benefits of monitoring in multiple-use management.

That prospect cannot be visualized by looking at only one or two functions

of management. Timber sale administration, for example, should not be
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charged with more than a fraction of that 60¢ per acre. Even though

remote sensing offers an opportunity for less costly administration of

salis, the total expenditure by the Forest Service for all phases of

timber sales, when prorated against all commercial acreage in the national

forests, is only 50¢ per acre. There must be a number of prospective

benefits aside from those anticipated in sales administration before

application no. 7 can be a reality.

If the hypothetical example given previously suggests the many

important problems that management might solve with the aid of sensing,

it may also suggest that data from space sensing will not be too helpful

for this application in the near future. Only insignificant amounts of

space data are anticipated to be useful for this application by 1980,

because imagery from telemetry is anticipated to be too poor in quality

and coverage too infrequent. Regarding quality of imagery, an exception

is that the telemetered snowline will probably be contrasting enough and

in enough detail to permit reasonably good estimates of extent of snow

cover, as recognized in tabulation and discussion of application no. 14.

The frequency of coverage will not be ideal for monitoring the snowline,

however.

One prospect for very substantial benefits to multiple-use manage-

ment is in detection of stresses on the vegetation, discussed under

application no. 8. Incidentally, this suggests caution to those who

are estimating values of possible benefits from sensing against a possible

duplication, under some other applications, of benefits that will be

contributed by application no. 7. Some possibly duplicating applications

are: numbers 1-6, 8, 13-15. The writer emphasizes, however, that the

part of total forest-range universe in the United States on which such
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duplication may be expected in the near future, is a relatively small

proportion. For example, with respect to application no. 3, "timber

inventory", most of the timberlands in the United States are in small

individual holdings under variable management policies. Thus applica-

tion no. 7 is not a realistic prospect on small holdings except through

unusually close cooperation in management by groups of land owners.
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8. Detecting Stresses on the Vegetation.

This is one of the most challenging sensing applications in the

forestry-range disciplines, because prospective benefits are so great

and so are the technical obstacles. On the one hand there are prospec-

tive savings through reduction of the tremendous annual losses in produc-

tivity of forests and ranges due to impacts of insects, diseases, drought,

overgrazing, air pollution and other damaging agents. The value of

only part of those losses--that in volume and growth of wood on U.S.

timberlands due to insects and disease--is estimated to be about $140

million annually (79). And more than $6 million is spent annually just

to control two specific forest pests alone: bark beetles and blister

rust disease. On the other hand the road of research may be long and

difficult.

The magnitude of needed research is pointed up by a recent report by

a panel of outstanding forest entomologists which indicated that adequate

control of forest pests is one of the greatest problems forest managers

face (32). Apparently there is opportunity for remote sensing to contribute

significantly to the solution of that problem. At the same time this

possible contribution depends upon research to establish sensor signatures

for both healthy and sick stands of vegetation. To illustrate the com-

plexity of signature research,some investigations on range vegetation

are cited. The research was in a test area where ground truth was

available on 18 specific associations dominated by big sagebrush, low

sagebrush, silver sagebrush, western juniper and crested wheatgrass (67).

Preliminary examination of the training samples indicated that 4 of the

18 associations might be correctly classified by multispectral scanning
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techniques even though all of the sagebrush communities were similar.

There were, however, strong similarities in responses from the universe

of 18 associations. This suggests that either the initial selection of

training samples did not accurately represent pure subjects or the re-

liability of automatic recognition from this single set of growing-

season imagery might be less than has been achieved for some agricul-

tural crops.

By no means do those preliminary results indicate that the foregoing

research will be unprofitable. On the contrary research at greater depth

into these subjects may pay excellent dividends. Nevertheless it must be

recognized that considerable trials beyond the test area are needed to

prove whether even 4 of the 18 associations can be consistently identified

by four signatures represent "normal" stands. Then there is still the

task of determining "normal" signatures for the other 14 associations and

various "unhealthy" signatures to indicate specific sicknesses that the

various associations in this one range environment are susceptible to.

The reader will not be surprised at the amount of research it may

take to establish spectral signatures if he recalls the close similarity

in visual appearance of a variety of stands that are significantly

different in at least one respect. It is a logical inference that

sensors may have the same difficulty in recognizing those differences

regardless of the capability of machines to sense things the eye cannot.

The problem is confounded by the difficulty of maintaining fidelity of

sensing on sequential coverages--a difficulty that concerns more than one

researcher in this field.

A few,very useful signatures of harmful stresses on the vegetation

may be established, apparently, without the tremendous task of research
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implied for those just discussed. These are the signatures of damage

that forecast more inevitable damage to come unless prompt management

action is taken. As an example the writer recalls a survey he participated

in nearly two decades ago (39). The prime objective was to estimate

the volume of timber killed by combined impacts of blowdown and bark

beetles throughout the Douglas-fir region of the Pacific Northwest and

to chart the locations of concentrated damage where timber might be

salvaged. That considerable effort, described under application no. 15,

"Evaluating Damage...", contributed in part to another objective:

detection of centers of incidence from which further damage might spread

through an expanding epidemic of bark beetles.

The damage began with two serious winter storms resulting in wide-

spread blowdown and breakage of timber by wind and freezing rain. Local

foresters suspected there had been severe damage to timberlands immediately

after the storms had passed but they could not guess these marked a

catastrophe that would kill ten billion feet of the most valuable timber

species in the Nation. They could not know either the magnitude or

locations of the damage by blowdown until the concentrations were mapped

systematically from the air. Nor, even knowing how windthrow favors

insects, could they visualize the magnitude of subsequent kill of

standing timber by beetles--from the broods that expanded for two seasons

in windthrow--until after the usual delayed fading of foliage marked it.

Thus, before marshalling for salvage began, the beetles had greatly

increased the mortality. Many of the areas of blowdown were five acres

or more in size--the kind of features that would contrast with adjoining

standing timber--even on telemetered imagery. Obviously sensing could not
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help minimize the destruction by wind and ice. However, it could, in

such a circumstance, greatly reduce the potential destruction by insects.

Men could not get to all the concentrations of windthrow in such a vast

forest region before the insects did; but men would know where those

concentrations were,virtually as soon as the beetles did. Without

doubt the first cloud-free pass of a vidicon sensor after an ice storm

would pick up the signatures of damage: either the blazing white line

painted by the "silver thaw" across mil,es of timber or the persistent

scar underneath where the trees were broken or windthrown.

Further examination of that Douglas-fir example indicates other

variations of signatures that forecast damage. Naturally, there are always

beetles in Douglas-fir forests, and that endemic population is not dis-

tributed uniformly. There are also "flags" to mark where the populations

are heaviest--clumps of recently killed trees, perhaps only single dead

trees. These flags, of course, are what aerial observers look for in

their annual pest detection flights. These flags or markers might also

form sensor signatures to identify zones (perhaps several hundred acres

in size) where endemic beetle populations are concentrated; yet where

beetles have attacked far less than one percent of the stand. Zones

where flags are more abundant--yet still representing a very low propor-

tion of the stand--together with signatures for zones where blowdown is

concentrated would no doubt indicate localities where insect control

could be most effective--since attacks of catastrophic proportions might

be expected unless expansion of beetle populations were checked. Still

another signature--recognizable as the foregoing through distinctive

pattern in the forest--would be significant. This is the one for zones
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where recently killed trees form substantial proportions of the stand.

That signature would be, perhaps, of no value in planning for control of

eetles since the abuurdance of flags would be prima facie evidence that

much of the stand is killed (even many trees still exhibiting green

foliage) and the remainder probably foredoomed to early death. It would

be a useful signature, however, to indicate areas where timber salvage

should be given priority before the wood deteriorates.

This conclusion that signatures may be registered by space sensors

for timber containing so few dead trees that they may comprise considerably

less than one percent of the stand is based largely on indirect evidence.

The reader will be familiar with the phenomenon that the eye may be

impressed with some contrasts at a distance that are not so impressive

on closer view, due to the concentration of a great amount of detail

into a narrow angle of view. For example, a bloom of flowers over a

broad hillside tends to be more striking at medium distance than in a

closer view. There also is more direct evidence: an example involving

visual observation and space photography that was called to the writer's

attention by Dr. Poulton of Oregon State University. He said he was

flying a few thousand feet above the ground across the southwestern

United States at the same time that some of the photographs were being

taken from Apollo 9. Since this was in March, he knew that some major

associations in that region were showing spring growth activity. Yet

by visual observation he did not note any particular contrast in the

usual grays of the landscape. After telling me that, he pointed to some

differences in tones on the color infrared photographs taken by the

Apollo flight on the same date. There was no doubt that there were

-106-



contrasts (not striking, but recognizable) in the tones between areas

of some major associations such as the mesquite desert grassland, the

short-grass steppes and the oak woodland. One reason for the contrast

was that some associations were exhibiting new growth, others were only

beginning to put on new growth or were dormant.

The foregoing suggests how a specialist can use sequential coverages

to great advantage in phenological monitoring phases of application no. 7.

It also tends to confirm how signatures based on average contrast over

sizable areas of terrain may be distinct enough for use in the automated

sensing systems of the future. This also indicates why resolutions

of specific details and tedious "eyeballing" by humans will no longer

be necessary for some data analysis. Evidence of this kind, no doubt

has influenced a recent change in viewpoints by interpreters in that

they now are willing to accept poorer resolutions than previously for

identification of certain phenomena or objects; the change in viewpoints

noted by Katz in his paper on the NRC summer study (49).

There are other examples of productive research into visual symptoms

of damage or threats of damage to vegetation that can be exploited

by sensors. For example, recent research at the PSWF&RES indicates that

visual symptoms (yellowing and mottling of vegetation) may be reliable

indicators of air pollution stresses on vegetation. Since these symptoms

may be detected long before the tree succumbs--perhaps as long as 10

years before its death--presumably there is time enough for action against

air pollution.

But there is another large area for sensing of vegetation stresses,

and potentially the most profitable one--if it can be exploited.
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That is in detection of previsual symptoms of stresses on the vegetation,

so that damage or threats of damage may be identified much earlier than

when reliance is only on detection of visual symptoms. Progress on

research into this area has been slow. As yet there are no operational

techniques for previsual detection of stresses.

This slow progress is partly due to the more laborious search for

earlier symptoms than for the later, visible symptoms of attacks by some

pests. It is due partly to the difficulty in searching for symptoms of

insidious pests which (like cancer) may not exhibit conspicuous warning

symptoms until much of the stand is condemned to death. An example of

research progress will be given in each category. In the first category,

there is some progress to establish previsual symptoms for bark beetle

attacks on ponderosa pine. The objective was to establish some easier

means, other than the arduous and costly ground examinations of the

tree trunks, of detecting which trees still exhibiting green foliage had

been infested and weakened by beetles. Research to date shows that "old"

and "recent" mortality can be differentiated from live trees by using an

airborne multipsectral scanner. There are also indications that consistent

signatures may be established whereby thermal sensors can discriminate

"hot" trees that are infected from "cold" trees that are healthy, in

pure stands of ponderosa pine where bark beetles are primary pests (40).

Progress is not so encouraging in trying to establish thermal sensor

signatures for Douglas-fir trees infested with root rot (90). This

research is complicated not only by a wide range in site, topographic

and stand conditions for this species, but also by the insidious nature

of the disease itself, which experts tell us is often difficult to identify
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even by close examination on the ground. One encouraging preliminary

result of this study is that holes occurring in the forest canopy as

groups of trees succumb to root rot may contribute to a sensor signature

for stands where centers of infection are heavy. Provided this feature

yields a valid spectral signature the prospect of detecting major stresses

on stands due to root rot is good. In effect this would be a signature

of damage that forecasts damage to come, just as with the signature for

increasing beetle populations that forecasts an epidemic of insects.

Similarly, it would also be a signature that could be picked up by space

sensors.

One complication in the operational use of thermal sensing to detect

changes in health of vegetation is that there are stresses in the ground

moisture regime. Thus an otherwise healthy stand of vegetation under

temporary stress of drought may be expected to register differently than

when ground moisture is abundant. Careful correlation of hydrologic

information with sequential sensor outputs will be required in such

situations to determine whether there is any other stress than temporary

drought.

The foregoing pertains to harmful stresses. There is also an impor-

tant role for sensors in evaluating effects of cultural treatments on

forests and ranges. Aerial sensors, particularly, should provide imagery

of suitable resolution to monitor the reactions of forest plantations

and range seedings to treatment by fertilizers and irrigation, thus

providing excellent management tools. Where the treatment is over a

large section of terrain, there is naturally an opportunity for space

sensors to also play a role, since signatures indicating changes in
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plantings or seedings due to treatment should be evident in magnitudes

similar to those due to phenology mentioned previously. It may be noted

that n large management units ths app---lcaion may be preempted by

application no. 7. Considering the extent of forests and related wild-

lands in this country, this is not a likely preemption over a large

proportion of those lands in the foreseeable future.

In conclusion, as the tables indicate, a small but significant

amount of information about harmful stresses on the vegetation is anti-

cipated to be contributed by imagery from spacecraft by 1980. Considerable

additional useful information on stresses should be contributed by that

date from high-level aerial photography. Both photographic and thermal

sensors in low-flying aircraft are expected to contribute substantially

to this application in the near future. In the long term, the prospect

for increasing the use of sensors from high altitudes for detecting

stresses on the vegetation depends to a large degree upon success in

several fields of research and development. One example is spectral

signatures research and refinements in instruments to give better ground

resolution. Although resolutions no better than hundreds of feet apparent

on telemetry from space will suffice to indicate stresses which extend

over wide stretches of terrain, much better resolutions (on the order of

a few feet or less) will be needed to detect some economically significant

stresses.
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9. Fire Weather Forecasting.

Since fires are periodic threats to forest and range resources

a considerable effort has gone into research on methods for effectively

planning for preventing, detecting and controlling wildfires. This

has involved aggressive, continuing research into phases of remote

sensing that are strongly supported by several agencies including the

military.

An important part of fire planning--forecasting fire weather--depends,

of course, upon timely reports of humidity, wind and temperature from

representative portions of the forest-range universe. Over substantial

sections of some regions ideal reporting stations are at inaccessible

locations. Thus current, reliable forecasts have not been possible--or

have been very costly at best. To solve this problem, fire fighting

organizations foresee widespread use of remote controlled ground weather

stations in the near future. In one large region containing many in-

accessible areas--the Columbia River Basin--there is already a fair net-

work of weather stations (about 2,000 stations). The network is used by

the Bonneville Power Administration and U.S. Corps of Engineers for

forecasting water runoff and streamflow. This network of microwave and

teletype would be very useful as a nucleus for fire weather forecasting

in the Pacific Northwest, though probably more readings would be required,

such as those on humidity, in addition to those now taken.

For a few years the fire weather data might be picked up and relayed

by ground stations. But by 1980 it is reasonable to expect that, on

request, a communications satellite will be capable of querying the ground

weather stations in a particular region and transmitting the readings
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(by relay from some central ground station) to regional fire control

headquarters such as those in regional offices of the U.S. Forest Ser-

vice. This technique would take advantage of the continuous surveillance

of a communications satellite at about 22,300 statute mile altitude

apparently in fixed geosynchronous position over the equator (47).

For transmittal of fire weather'data, the satellite system would replace

most of the telephonic facilities which often are overloaded. To min-

imize conflict with other traffic via satellites, fire weather reporting

should, of course, be limited to those seasons when such a service is

urgently needed. During the 1980 time period it is assumed that satellite

service for fire weather communications will be limited to regions where

risk from forest and range fires is great and to those periods when

fire danger is the most critical: when combinations of high tempera-

ture and low humidity (and sometimes strong wind) bring flash fuels

close to the ignition point and favor rapid spread of flames. The commun-

ications traffic on fire weather in other situations is presumed to

be handied by ground facilities. This assumes that the same remote-

controlled ground stations comprise a large part of the basic network

used in both satellite and ground systems.

In discussing potentials of remote sensing, one aspect of fire

weather forecasting merits particular emphasis. That is the tracking

of thunderstorms and monitoring of cloud-to-ground lightning strikes.

These strikes are, of course, very hazardous to wildlands. Each year

about 7500 lightning-caused fires occur in the United States. In some

regions lightning is the most frequent cause of forest and range fires.

In the Rocky Mountain States, for example, lightning causes some 70
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percent of the fires in wildlands (33). That this is a continuing, im-

portant hazard to forest and range lands is indicated by estimates by

ESSA that at any given moment there are 1800 thunderstorms in progress

over the surface of the earth and that lightning strikes the earth 100

times each second (89). Assuming that these discharges are randomly

distributed so that forested lands receive them in proportion to the

amount of surface forested, there would be more than half a million

discharges over forest land during every 24 hour period.

Research in remote sensing of thunderstorms by the Northern Forest

Fire Laboratory is encouraging. Much of the research has been aimed

at detecting lightning strikes by some detector (radar and others)

located on a mountain top. One detector recording luminosity can detect

strikes up to 50 miles away in broad daylight. In such a situation the

eye could not detect strikes further than 25 miles away. Incidentally,

fire lookouts are believed to see only half the lightning strikes that

occur, and in severe thunderstorms, when visibility is severely restricted,

only about 25 percent (33). Sensors have been developed to look at the

electrostatic field to discriminate between cloud to cloud discharges

and the dangerous cloud to ground discharges and to determine which of

the latter are the fire-causing, continuous types of lightning (35).

Luminosity sensors are now being satisfactorily used for the purpose

because they are simple and their signals are easy to evaluate. In

Alaska tests currently are underway with airborne sensors aimed at

developing a monitoring system to detect fire-causing,cloud-to-ground

strikes.

There is no immediate prospect of using sensors from space to
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locate dangerous cloud-to-ground lightning strikes, due primarily to

the limited range of the sensors now in development. Nevertheless,

there are foreseeable prospects that space platforms will be used to

trace thunderstorms that are potentially dangerous as fire hazards to

forest and range lands. The Forest Service is now planning cooperation

with ESSA in meteorological studies to follow synoptic patterns of

thunderstorms. Yet improved coverage by meteorological satellites is

needed. Thunderstorms have durations of a few hours at best and are

often measured in minutes. One research study showed that about two

thirds of all storms last no more than an hour and a half (33). Neither

the Tiros nor the Nimbus series of satellites has given the frequency of

coverage needed to monitor thunderstorms effectively, despite good jobs

of monitoring storms of longer duration, i.e., cyclones and hurricanes (77).

By 198Q meteorological satellites similar to those in the proposed

Aeros series (77) should be in orbit. These satellites in a geosynchronous

equatorial orbit should have the capability for virtually continuous

surveillance of weather. Resolution of cloud detail should be somewhat

better than under former systems--a fraction of a mile (60). Those

capabilities should permit tracing the synoptic patterns of thunderstorms

and, hopefully, detecting which ones offer the greatest fire threats to

vegetation resources, i.e., with potentials for cloud to ground strikes

of a continuing nature. In the near future it is likely that the poten-

tial for lightning-caused fires will be predicted by numerical models

based on data supplied, via satellite, from the network of remote-

controlled, ground,weather stations.

In the foreseeable future, when space sensors are monitoring the
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synoptic patterns of thunderstorms and there is coordinated aerial and

ground sensing to trace which storms have the damage potential of cloud

to ground strikes, the fire control job should be greatly simplified.

Then the fire control organization not only can be readied for efforts

against the most likely localities where lightning-caused fires may ori-

ginate; it can also act prior to strikes, possibly through such means as

cloud seeding (34) to neutralize the most threatening storms.

In conclusion, it may be noted that for fire weather forecasting

the sensing must be on a daily basis and in some respects on a continuous

basis; just as in the next two fire applications to be considered. Fire

weather forecasting is the only one of the three applications directly

concerned with wildfires where any significant contribution from space

sensing is anticipated by 1980. In trying to objectively appraise the

prospects that are painted in such bright colors by some researchers and

fire control men and in more neutral colors by others, the writer es-

timates that the contribution from space sensing in fire weather fore-

casting will be limited, as shown in Table 1. As shown in Table 3,

that contribution is rated "moderate" in amount. Relative contributions

from space, as compared to data collected by other media, are estimated

to be greater to fire weather forecasting than to any of the other forest-

range applications except no's. 1 and 14. This is not dependent on use

of data from ERTS vehicles as such. The contributions are anticipated to

be from communications and meteorological satellites.
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10. Detecting Wildfires.

It has been estimated that costs of forest fire detection in the

United States now exceed $10 million annually (43). At the same time

fire control organizations are continually trying to improve detection

techniques as one means of reducing costs for fire control which now

approach $350 million a year and to reduce the destruction of natural

resources by the more than 100,000 fires that occur in this country

each year. An indication of the toll taken by fires is that the value

of unsalvaged timber and the timber growth loss destroyed each year is

estimated to be more than $20 million (79).

A significant amount of research is in progress to improve detection.

Most of this involves remote sensing techniques to give more reliable,

timely detection. The combinations of visual air observation, ground

patrols and fire lookouts in current use do not insure rapid detection

when visibility is poor.

There are indications that integration of remote sensing into the

fire protection system will insure consistently rapid detection, and

some authorities believe that detection costs will also be reduced.

Current research is concentrated on developing thermal sensing and

operational tests have been made of the most promising thermal techniques.

These include use of sensing windows in the 3-6 and 8-14 micron wave-

length ranges to achieve ground resolution on hot targets as small as

20 feet in diameter. With presently available equipment this means use

of aircraft flying at about 15,000 feet above the ground. While results

of these tests have been encouraging they do not forecast that thermal

sensing is a panacea for all fire detection problems. As Hirsch, a
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leading researcher in this field, has pointed out: "...targets...in

forest fire applications are at least 500 degrees F. hotter than their

surroundings. This has led many...to assume that temperature and...

resolution requirements for forest fire surveillance are much less

stringent than for...other...(thermal) applications. This assumption

is not valid. We must know the locations of fires with respect to top-

ography...and imagery must be good enough not only to pinpoint hot

targets but also to resolve fine details of terrain." (42).

A prototype fire detection system now being refined was given its

first thorough testing in the 1967 fire season and the results were

reported in "Fire Control Notes" in 1969 (58). This test covered a

study area of 41 national forests in the western United States. The

system, installed in a Convair T-29B aircraft, included three items not

found in other infrared systems: (a) a rapid film processor, (b) a

target discrimination module (TDM) which automatically marks hot targets

on the film, and (c) a Doppler radar navigation system which provides

accurate, instant information on an aircraft's position.

More than 1400 target marks were recorded on the film during this

test. Of these only about 600 were interpreted as hot targets; the

remainder were interpreted as false alarms: road, snow, water body, etc.

(Since the test, the TDM system was redesigned to reduce if not eliminate

that discrimination problem.) Of the 601 hot targets, 35 percent were

interpreted as wildfires; though some later proved to be campfires, slash

fires, unknown and unconfirmed, etc. The other 65 percent of the hot

targets were incorrectly identified because of incomplete ground intelli-

gence. This merely confirms, of course, that regardless of detection
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method there must be good intelligence on location of camping areas,

hot springs, scheduled slash burnings, etc. so that wildfires may be

screened out.

Actually 134 wildfires in various stages of control were scanned.

Only 40 Of those were unmanned fires when scanned--the kind the system

is aimed to detect. The TDM detected 58 percent of those,whereas the

conventional methods had detected only 35 percent. Several of the 14

fires that were detected by the IR system and not by conventional

methods could have become serious if they'd remained undetected for long.

This apparent substantial advantage of the thermal sensing system over

the conventional methods must be weighed against a disadvantage. The

scanner picked up 55 unconfirmed targets that were within the universe

interpreted as wildfires. Despite a considerable amount of time spent

in searching by suppression crews,none of those targets could be found

or identified. Some could have been small fires that went out naturally;

others false alarms. Lookouts later reported flareups at two of the

unconf'irrmed locations. Regardless, this matter of unconfirmed reports

of fires poses a problem for further research. This also underlines the

importance of the patrolman on the ground. He will be needed in any

event to contact the public on other matters along with compliance

with fire regulations. Only he can surely verify whether the hot spots

in heavily used parts of the forest are due to controlled heat sources

such as barbecues, cars, motorcycles, clusters of rollicking teenagers,

or many other nondangerous threats to the forest. And he, of course,

is a first phase attack unit on any heat source that may threaten the

wildlands. He is not only a priority unit in the detection phase of
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fire control, he is also a key unit in the suppression phase. In

effect, he is a more efficiently designed unit for detection and suppres-

sion of many forest fires in their incipient stages than the most

sophisticated combinations of machines that man is likely to devise.

The foregoing indicates why most men in fire control are definitely

interested in the use of sensing to supplement other means of fire

detection yet why none of those interviewed by the writer would estimate

probable cost savings by this technique.

One experienced fire control man visualized the incorporation of

two phases of sensing into the fire detection system along the following

lines in the near future. As one phase there would be fast jet flights

at 15-20,000 feet above the terrain giving thermal readouts on film.

These flights might be every few hours across main danger zones at the

peak of the fire season, designed to give readings on suspected wildfires.

Flights, of course, would not be halted by darkness, but readouts would

not be possible through clouds. Ground headquarters would monitor

these readings, screen out those fires known to be under control such

as in campgrounds and would schedule checks of suspect locations either

by low flying aircraft scheduled in the next phase or by suppression crews.

In another phase, flights would be made by slow-moving planes at

low level only a few thousand feet above the terrain. Most of these

flights would be in daylight and would take advantage of both visual

and thermal sensing. Part of the coverage would be systematic, but at

longer intervals than the high level flights (possibly only once a day).

That coverage would be scheduled only over zones where fire danger was

most critical, where flash fuels were abundant, or where terrain was so
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inaccessible that there would be a much greater logistical problem in

fire control than normal. The other flights would be on a directed

basis--to check on suspect locations revealed by the high level flights,

to cover areas obscured to high level flights by clouds, and to monitor

areas after lightning storms.

In both phases, interpretation of imagery might best be done in

the aircraft, and fire locations referenced to a geographic grid,then

radioed to fire control headquarters. Telemetry of imagery to head-

quarters apparently would be a less preferable alternative due to loss

in resolution of targets which may be barely detected on the original

imagery.

It is possible that with such a system there would no longer be

need for lookouts. Yet ground patrols presumably would still be required.

Also if fixed lookouts (humans or TV stationed on the ground) were to

be eliminated they would take with them the virtually continual surveil-

lance for one of the surest indicators of a fire--its plume of smoke.

Primie reliance for detection, then, would be on visual observation of

smoke plumes by the observer in an aircraft (perhaps only a daily pass)

and the capability of the sensor to detect the flames. If main dependence

were to be placed on the latter, aircraft flights must be close enough

to insure that tree trunks do not obstruct the line of sight between

sensor and a fire. Research indicates that tree trunks may completely

obscure line of sight to a fire when the aspect angle exceeds 60 degrees

from the vertical in moderately stocked timber stands and when it exceeds

48 degrees in heavily stocked stands (93). Thus to effectively sense

fires in dense stands of timber may require halving the distance between
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flights over those required to effectively sense fires in moderately

dense stands.

Looking further into the future,the highest level flights might be

made from spacecraft. That might be no realistic probability until thermal

sensors were replaced with microwave sensors; and as indicated under an

earlier section there are some technological obstacles in using micro-

waves that are not likely to be solved within the next decade or two.

In conclusion, as noted in the tables there is little prospect of

a contribution from space sensing in the application of fire detection

by 1980, because of inadequate resolution and not enough frequency of

coverage. For the near future that application should depend upon close

coordination between thermal sensing and visual observation from aerial

platforms, lookouts and ground patrols.

As a footnote it may be mentioned that even the crude space imagery

expected by 1980 will reveal the locations of some forest fires. Space

imagery, with resolutions no better than 100 feet, should certainly

pinpoint smoke plumes from fires that are well underway. Also, if a

protection organization is functioning, virtually all of those fires

(recognizable on the infrequent and poorly resolved imagery from space)

would already be the focus of suppression efforts; therefore such imagery

might be "interesting" but hardly "important" to fire detection organiza-

tions.
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11. Mapping Wildfires.

Much of what has been said about fire detection applies to the fire

mapping application as well, with one main exception. Fire mapping is

always needed on a directed basis. There is no general limitation on

frequency of coverage, except as that applies after sensing has been

committed to monitor a wildfire. Once monitoring begins, coverage is

desirable about four times within every 24 hour period. Several in-

vestigators recommend the following flight times for thermal sensing:

0400, 1000, 1400-1600 and 2000-2200 hours (41). This coverage, they

advise, should be most useful to the fire boss in deployment of suppression

forces. It also avoids the hours immediately before and after sunrise

and sunset when, as they report "...thermal washout, low sun angle, and

rapidly changing conditions make...difficult...good terrain detail on

IR imagery." One of these investigators also advises in another publica-

tion that "Sorties made at night yield the best imagery." (8). It is note-

worthy that this is time when fire behavior tends to be quiescent.

Lower level flights are recommended for fire mapping than when

thermal sensing for fire detection. Flights between 4,000 and 6,000 feet

above the terrain are recommended with present equipment for effective

mapping of fire perimeters. (For an excellent discussion of the present

state of the art the reader is referred to "Project Fire Scan, Fire

Mapping Final Report" (41). Fire control men have made good use of

thermal sensing flights on several large uncontrolled fires; the kind

where blankets of smoke may obscure observation of a fire front by any

other method--the kind of situation exemplified by the Sundance Fire in

Idaho during the disastrous 1967 fire season (4).
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One investigator has estimated that in a few seasons of application

infrared mappers have reduced fire suppression costs by more than a

million dollars and have saved more than ten million dollars in resources

that would otherwise have been consumed (8). Apparently few fire bosses

care to subscribe to such a specific estimate, though most appear to

welcome infrared sensing as an aid to fire control. They may be thinking

of delays in the drop of the imagery to the fire camp caused by palls

of smoke and turbulent air or of situations when cloud cover precludes

use of thermalsensing--situations not too uncommon when wildfires are

raging out of control. They may also be thinking, as one seasoned

fire control chief was when the writer interrogated him, that on really

destructive fire the critical aspect concerned neither detecting nor

mapping the fire. The main problem confronting the fire boss was a

logistical one of marshalling enough forces and committing them soon

enough at the right point on the fireline to suppress the flames--when

there was no question where that commitment should be made.

In conclusion, as shown by the tables, there is no expectation that

sensing from space will contribute significantly to the fire mapping

application by the year 1980. Just as with fire detection, sensing

from space may reveal where large fires are raging and may even trace

some main perimeters during the moment when the space sensor passes.

But the resolution will be so poor and the intervals between observations

so great that no particular contribution may be expected. In the further

future, when microwave techniques are perfected and space sensing is

virtually continuous with good resolution, there are prospects that

sensing from spacecraft can make a substantial contribution. For the
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near future, the fire boss must continue to rely on observers in fixed

wing aircraft or helicopters, supplemented by thermal sensing from

aerial platforms--and by reports from firefighters returning to the

camp from the fireline for his decisions on committing suppression

forces.
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12. Monitoring Air Pollution Caused by Wildfires and Prescribed
Burning.

Recently there has been considerable concern over the amount of air

pollution that may be caused by wildfires and slash burning. Forestry

authorities are giving increasing attention to this problem. In the

West, particularly, this includes investigation into various other methods

of slash disposal as alternatives to burning. In the South the concern

is oriented on the large acreages of forest land where burning is pre-

scribed (on some 2-2½ million acres, annually) to reduce fuels and in-

crease forage. Foresters are also discussing the possibilities of

tracing movement and amount of smoke over forested areas by remote

sensing under the assumption that fires are serious threats to air

pollution. To the best of the writer's knowledge no specific investi-

gations have been made or are underway into the use of sensing to evalu-

ate this problem; therefore any conclusions are speculative. Nevertheless,

photography could certainly be useful for monitoring smoke concentra-

tions. Also sensing in the thermal infrared and microwave regions appears

promising.

Research apparently is needed to answer such pertinent questions as

the following: How much wood smoke (aerial extent in square miles and

density) is a significant contributor to air pollution? Does the toler-

able amount of smoke vary appreciably by locality? That is, may a large

quantity of smoke over a relatively undeveloped forest region ordinarily

dissipate over that region without constituting a pollution problem? Does

this depend greatly on the local topographic situation? Is a few square

miles of smoke concentrated over a small inversion zone more serious than

how many square miles over other zones? How frequent must monitoring of
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smoke concentrations be? Should frequency of monitoring vary significantly

by topography or other situations which cause inversion zones or other-

wise affect air movements?

Until research is done, only very tentative conclusions may be

reached on how sensing may contribute in solving the problem and what

kind of sensing may be required. Some argue, of course, that sensing

on a moderate scale can help in furthering investigations of the problem.

Presently the assumption is made that smoke from fires in forest and

range lands constitutes an air pollutant, although whether it has toxic

effects approaching that of industrial smog, for example, is not known.

It is assumed that any smoke concentration of several square miles

which prevails for more than a day or so is a pollution threat. There-

fore monitoring presumably should be at intervals no longer than two days

in regions and during seasons when fires are occurring. It is also

assumed that any concentration exceeding several square miles in area

should be recognized. Presumably the main concern is with much larger

concentrations such as occur during the fire season for days on end over

whole drainages of a hundred or more square miles in area. These are the

smoke palls that would appear to have not only a significant detrimental

effect on air quality but also on its clarity. Certainly obscuration of

scenery by smoke is not welcomed by forest recreationists. When these

combined effects are considered it is evident that pollution by smoke

even in undeveloped areas may be an appreciable problem. At this

speculative stage it would appear better to exaggerate the problem rather

than to underestimate it; hence the assumption that a concentration of

smoke only several square miles in extent might be significant.
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With the foregoing in mind the conclusion may be reached that aerial

photography from high altitudes, at intervals of two or three days,

should be useful in appraising the amount and movement of smoke concen-

trations. Until more is known about the importance of this potential

pollution problem, flights just to serve this one application may be

economically questionable. This caution leads to a consideration of

opportunities for data collection in conjunction with some other sensing

application. .Obviously, here the objective is to collect information

on something that obscures the detail required for most sensing appli-

cations in the forestry and range disciplines. Thus the best opportun-

ities for combining this application with another is with a monitoring

application such as no. 7. Unfortunately the frequency of coverage in

no. 7 does not appear to be often enough for monitoring smoke. Never-

theless even approximately biweekly coverages should give some informa-

tion on the distribution and movement of smoke palls. Indeed this probable

benefit to application no. 12 should reinforce the justification for

initiating application no. 7 at an early date in some important forest

region.

Still in pursuit of available data that might be useful in moni-

toring smoke, it is profitable to anticipate what will be collected in

the near future by space sensors. In line with the study assumption

on state of the art by 1980, sequential coverage is anticipated by ERTS

vehicles at intervals of about 18 days to give resolution of 100 feet.

Thus the resolution should be adequate. Both Gemini and Apollo 9 photo-

graphy produced imagery of smog patterns. Sequential coverage at 18-day

intervals should give some useful information on movement and persistence
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of concentrations of smoke. If, perchance, the monitoring application

no. 7 were producing aerial coverage in some forest region and that cover-

age was not coincident with the coverage from space, there might be some

sequences in the combined coverages only a week apart.

Pursuing the possibilities of using data from space still further,

it is profitable to look at the prospective coverage from meteoro-

logical satellites. There the prospective sequential coverages are in

terms of hours. Certainly coverage on a daily basis will be available.

Furthermore the resolution of imagery from those weather satellites

should be adequate to resolve smoke concentrations of several miles in

extent--provided the density of smoke is great enough and provided smoke

is differentiated from clouds. It is evident that clouds must be differ-

entiated from smoke for weather forecasting. Presumably the multi-

channel measurements by cameras and radiometers in weather satellites

(75) will help solve that problem. Thus there should be an opportunity

for remote sensing from space to contribute to monitoring of air pollu-

tion by smoke from fires in forest regions. As indicated in Table 2 this

contribution from space is rated as only "small" for the near future,

due to the many unresolved questions about the problem including the

one as to what density of smoke may be both toxic and easily detected

by sensing.
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13. Monitoringq Water Cycle, Pollution & Erosion.

This application is one of the broadest in scope. The major phase,

the evaluation of the moisture regime or hydrologic cycle, extends far

beyond the forestry and range disciplines. Yet to a large degree the

establishment of a water balance in many regions (whereby precipitation

less losses equals water yield) is determined on upstream, forested water-

sheds. And the quantity of water and the rate of its movement from

upstream watersheds naturally have a strong impact upon what happens down-

stream in developed areas where flooding and silting with their effects

on pollution are most damaging. Data on the moisture regime, of course,

are directly useful in forest and range management and protection; in

fire control planning, tree planting programs, range reseeding, and other

activities. The data may indicate not only severe moisture stresses on

the vegetation but also susceptibility to stresses by various forest

pests such as insects and diseases. Obviously there is an overlap from

this application into others; an overlap that is probably greatest with

the comprehensive monitoring application no. 7 and also evident in no. 14,

"Monitoring Snowfields". In the latter instance, however, a clear dis-

tinction may be drawn between applications.

Some indication of the effort expended on forested watersheds

to obtain and evaluate hydrologic data is that on national forests each

year something approaching half a million dollars is spent for water

quality surveillance, another $1 million for water yield improvement

and about $1 million for hydrologic surveys and planning hydrologic

restorations. About 15 percent of all the foregoing is for data collection,

primarily by ground methods.
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Unquestionably remote sensing can play an important role in this

application. A good documentation of the uses of aerial photography

in hydrology is presented in Chapter 10 of the Manual of Photographic

Interpretation (2) and much of that concerns applications on upstream

watersheds. The reader is referred to that publication for good

explanations of how photography may be effectively used to determine

for a watershed such items as total precipitation, water loss (by

interception, transpiration and deep seepage) and yield of water.

Photography, of course, is a good recorder of the scars left by water

erosion, of the extent of flooding (and its progress and abatement by

sequential coverage), and of the extent of flood plains and of deposi-

tions of sediments. These features usually exhibit strong contrasts

with adjacent features on photography. Thus,even on rather low reso-

lution photographs from space,those features should be among the most

recognizable.

One aspect of water pollution is amenable to photographic sensing:

the degree of turbidity caused by sediments in suspension. Provided

photographic factors are constant, in any given body of water the lighter

the tone of the water the greater the turbidity. Since shallow water

is registered in lighter tones than deep water, sequential photography

is the reliable way to evaluate change in turbidity of a stream or lake.

Though turbidity affects water quality in several respects, (e.g.,

making it difficult to treat), there are, of course, other important

quality considerations including that of temperature. This suggests the

use of thermal infrared sensing. Low level airborne thermal sensing

appears to be an excellent tool for evaluating the small differences in
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water temperature of only several degrees that are so important to

appraisal of water quality for fishlife and other purposes. Since a

thermal sensor also responds to differences in moisture content of soils,

there appears to be a good prospect for using this tool to appraise

moisture levels at both surface and subsurface that have significant

effects on runoff and floodings. This might be particularly useful in

determining the subsurface zones where the soil has been saturated and

where there are possible sources of destructive floods. Further research

is needed to establish the limitations of thermal sensing for appraising

moisture levels; but prospects are encouraging that this technique may

not only reduce ground work in trying to make flood forecasts, but also

provide much better information on this problem than is possible by

present methods.

Increased use of aerial sensing appears in the offing, at least

through visual and thermal infrared windows, for monitoring the water

cycle and erosion, and evaluating water pollution. The needs are for

sequential coverages but the required frequency varies. Obviously

some sequential coverages would be desirable at intervals no longer

than daily--perhaps even hourly--during periods when flooding might be

expected or is underway. Coverage to evaluate the moisture regime

throughout the growing season might well be accommodated within a bi-

weekly cycle such as that suggested for application no. 7. Coverage

to evaluate changes in turbidity might also be biweekly--at least

monthly. Coverage to appraise erosion effects, on the other hand, might

be on a directed basis to get current appraisals after severe storms in

critical areas. It might be accommodated within an annual cycle in other
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circumstances and in noncritical areas. An annual cycle should be often

enough to reveal any gradual erosion and at the same time provide a measure

of progress in revegetation and other improvements designed to correct

erosion.

In conclusion, for many of these applications, aerial sensor plat-

forms would seem to be needed, as for applying thermal sensing under the

prospective state of the art in the near future. At the same time data

from space should be useful in any variations of the application where

resolution and frequency of coverage are satisfactory. Specifically, it

would appear that the vidicon coverage visualized from ERTS vehicles by

1980 would provide useful information on soil erosion. The sequential

coverages should indicate the increase or decrease in larger eroded areas

(a hundred or more feet across). Signatures might also be developed to

identify zones where small fingers of eroded ground are interspersed

between patches of vegetation. Any substantial amount of pollution due

to increased turbidity should also be recognized by space sensors. The

Gemini and Apollo photography of the Colorado River mouth provided evi-

dence that both turbidity and water depths may be registered from space.

As shown in Tables 1 and 3, a significant amount of information from

space is anticipated for this application by 1980.

As a footnote it should be mentioned that there can also be a

contribution from communication satellites to this application by 1980,

similar to that anticipated in fire weather forecasting. There should

be an opportunity for specialists in hydrology and watershed management

to tap via satellite the same ground weather stations that fire control

men rely on for fire weather forecasting. Depending on the communica-
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tions traffic, this might be limited only to periods of critical flood

danger. If the competition for communication service does not preclude

use on a more regular basis,this source of data could be one of the

best for managing the water regime on forest watersheds.
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14. Monitoring Snowfields.

An important part of the required data for estimating water yield

in many forest regions is obtained by snow surveys. The importance of

estimation of snowpacks in forecasting water runoff is indicated by

the following quotes from an appraisal of the huge Columbia River Basin

(78). "The Columbia...and its tributaries are being developed rapidly

for power, flood control, irrigation and navigation...In order that

reservoirs may be operated to best advantage...(it is) important to have

reliable forecasts of runoff, both seasonal and short term...data on

snow coverage were required particularly for short term forecasting...

during the ablation season...as long as at least 40 percent of the basin

above Columbia Falls is snow-covered there is...high flood potential..."

In the mountainous West, as the reader may know, snow surveying is

a special function of the Soil Conservation Service, although in some

areas other organizations may be charged with responsibilities for this

job. In California, for instance, snow surveys are under the direction

of the State Department of Water Resources. On western national forests

there is, of course, participation by Forest Service personnel. While it

is true that this is an application which is not confined to the forestry-

range disciplines and that hydrologists are the scientists primarily

concerned with the application, most of the snowfields in the United

States are situated within extensive forest areas or in close proximity

to them. Therefore, "monitoring snowfields" cannot be ignored when

evaluating possibilities for remote sensing over forests and ranges.

Present methods for snow surveys rely mainly upon courses which

transect the mountains and which are traversed on foot. Three parameters
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must be measured at periodic intervals: area, depth and density (water

content) of the snow pack. No reliable technique has been devised to

obtain data on snow density except by ground sampling. Aerial photog-

raphy is used in some regions to good advantage to estimate area; and,

provided periodic coverages can be made, photography appears to be the

most effective way to obtain reliable data on areas. Aerial photography

can be used also in measuring snow depth. A photogrammetric method has

proved successful using large-scale photos where good ground control

is available (70). However a simpler, accurate method is to establish

depth markers on the ground in inaccessible country and photograph them

periodically to provide depth readings (2). In effect a multi-stage

sampling scheme, integrating photography and ground work, may be used to

get reliable estimates of volume and density of snow pack periodically.

Vertical photography, either complete or in sampling coverages, provides

estimates of area; more limited oblique photography at low levels pro-

vides readings on snow depth; and ground samples at more limited locations

provide data on snow density.

There have been limited investigations into sensing techniques to

estimate snow density and eventually some technique may be perfected

for use at least at low level. Regardless, hydrologists apparently

feel that some work must be done on the ground. Therefore the prospects

for significant reduction in costs of operation of snow surveys through

sensing density of snow are not good, particularly when it appears

that relatively few ground samples of density need be taken. This is

because density apparently is relatively constant over large areas

within a given altitudinal zone. One investigator reports that "...

Samples of new snow showed largest variability....After snow melt began,
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density samples were less variable..." (36).

The reader will recall that wherever application no. 7 is applied

the monitoring of snowfields might be accomplished with the biweekly

cycles scheduled during the growing season for that broader monitoring

application no. 7. Actually, though, biweekly coverages are not fully

satisfactory for monitoring snow fields during the season of rapid snow-

melt. As noted in Table 2, weekly coverages are recommended during the

ablation season. Also, approximately monthly coverage of snowfields is

desirable during the winter. Thus the normal frequency for application

no. 7 is not in itself all that is needed for application no. 14. The

reason the monitoring of snowfields was presumed to be marginally possible

under application no. 7 is that at the same time supplemental coverages

were presumed to be available by 1980 from space sensing. Presumably

the coverages from space would be available year long, clouds permitting,

at perhaps 3 week intervals and might well be staggered between the

regular biweekly coverages of application no. 7 during the growing season.

The good contrast between snow and other features on space imagery

has been reported by several observers (1, 76). Even imagery from

meteorological satellites, with considerably poorer resolution than

expected from ERTS vehicles, can be better than normal aerial coverages

since--cloud cover permitting--they would insure complete synoptic views.

In conclusion, ignoring the probability of an overlap and preemption

of monitoring snowfields by the comprehensive monitoring of application

no. 7 in some areas, it appears that both aerial and space imagery soon

will be making useful contributions to application no. 14. Space sensing

should be making a substantial contribution in the estimation of one of
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the three parameters needed to evaluate snowfields--that of area. This

explains the moderate amount of space data credited to this application

by 1980. Aerial photography may be considered as supplementing space

sensing primarily to provide additional cycles of coverage during the

ablation season to estimate areas of snow packs. Aerial photography

should also continue to contribute along with ground work to the periodic

estimation of snow depth. Ground surveys, alone, may continue to

contribute the data needed on snow density. As indicated earlier, this

integration of data collecting methods may be considered to be a useful

variation of multi-stage sampling.
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15. Evaluating Damage to Forests and Ranges.

This application is directed to an area after there is reason to

believe that serious damage to forests or ranges has resulted from attacks

by destructive agents such as fire, disease, weather or insects. This

application may follow closely behind an application aimed to detect and

prevent spread of fire or harmful stresses on the vegetation but its

two-fold objectives are different since it always comes after considerable

damage has occurred. Primarily it aims to determine (a) what parts of

the resource are salvable after partial destruction and (b) what measures

should be taken to restore productivity of the land (implied by conditions

indicating significant reduction in productive capacity such as soil

erosion and destruction of growing stock).

The value of losses due to destructive agents on forests and ranges

of the country run into millions of dollars each year. These losses in

sawtimber, alone, have averaged a quarter of a million dollars annually

in the past decade, according to an estimate by the U.S.D.A. (79). Much

of the damage of this kind was appraised through aerial surveys (visual

and photographic) and ground work. But more prompt application of remote

sensing to all areas where severe damage was believed to have occurred

no doubt could have considerably reduced these losses by focusing attention

on all areas containing salvable timber. Furthermore, prompt sensing

would also have drawn attention to critically damaged areas where remedial

measures were needed to restore productivity of the land for yields of

timber and other resource values.

There are occasions when application no. 15 can help prevent subse-

quent losses to resources. The reader will recall, in the discussion of
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application no. 8, reference to a survey to appraise damage to timber

after catastrophic blowdowns and beetle attacks in the Pacific Northwest

(39). To some degree that survey helped prevent further damage by

focusing attention on insect attacks which had already reached epidemic

proportions. The prime purpose of that survey in the '50's, nevertheless,

was to determine amounts and locations of dead, salvable timber before

deterioration set in.

That survey of catastrophic damage in the Douglas-fir region

illustrates the kind of special damage surveys needed in the near future

when the monitoring application no. 7, at best, will cover no more than

a small proportion of the universe of forests. When compared to the

methodology discussed in application no. 7, that survey used primitive

techniques. The deadline for beginning of salvage precluded the flying

of aerial photography over this vast area (much of Western Oregon and

Washington), therefore the job of mapping and estimating was done by

coordinated visual observation from low-flying aircraft and crews taking

samples on the ground. With respect to salvage opportunities, the survey

provided in-place estimates in two categories--heavy and moderate--of

both blowdown and beetle-killed trees. In heavy blowdowns,more than 25

percent of the stand was estimated to have been windthrown; in moderate

blowdowns,lO-25 percent of the stand. In heavy beetle kills, groups of

more than 30 individual trees were estimated to have died; in moderate

kills,groups of only 6-30 trees. For blowdown, the relative size of area

was also mapped to show two classes: more than 10 acres and 5-10 acres in

size. The foregoing kind of information could be obtained by aerial

sensing. Under the state of the art assumed by 1980 most of that informa-
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tion would be very useful in planning by regional organizations. In

particular it would show increases in fire hazard by localities, due to

concentrations of dead timber. That information alone, however, was not

enough as the basis for a comprehensive salvage program. Ground sampling

surveys were necessary to indicate what portions of the blowdown timber

were unbroken and sound material, suitable for marketing. Also other

information not obtainable by remote sensing was needed: locations of

damaged timber by individual ownerships (even though proportional dis-

tribution of the total within major ownership classes--public and

private was known); and which locations were contiguous to or within

the areas scheduled for cutting under a current plan and what part must

be scheduled as emergency logging operations.

The foregoing example illustrates one of the best opportunities for

capitalizing on remote sensing. The areas of damage were extensive through-

out a large region where the level of forest management was reasonably

high but not intensive.

Some generalizations may be appropriate at this point. One gen-

eralization is that remote sensing usually cannot play a primary role

in regions where forest management is quite intensive, as in western

Europe or in some parts of the deep south of the United States. In those

situations the owner-manager already knows the species, the age, the size

class and condition of each individual stand of trees on his property.

He has probably carefully supervised their planting after the latest

harvest cuts. And when a catastrophe comes along he will, no doubt, take

a proprietary interest in examining his property expeditiously on the

ground--on foot or by car--within hours after the catastrophe strikes.
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In that quick appraisal he may learn as much as an expensive reconnaissance

by remote sensing can tell him. Another generalization is that in regions

where little or nothing is known about the character of forest, there is

prima facie evidence that no one really cares very much what condition

it is in. Thus the efforts of remote sensing--if someone undertakes them--

may be largely wasted. They may not be entirely wasted, however; and for

more on that the reader is referred to Section VI on the foreign potenti'al.

Extrapolating from damage by blowdown and beetles to damage by

fire or disease does not change the perspective greatly. There are

some important items to be obtained accurately by remote sensing; others

to be obtained by ground work. For more on the procedures and on how

aerial photography can contribute in evaluating damage to forests,

the reader is referred to Chapter 7 of the Manual of Photographic Inter-

pretation (2).

There are serious damages to ranges that remote sensing has a

good potential for evaluating, now that large areas of western U.S.

ranges are being reseeded artificially. Damages by defoliators, such

as crickets and grasshoppers, and by abusive grazing of animals are

becoming so extensive that even telemetered imagery from space may well

indicate the affected areas. Weeds are also becoming a serious problem

on range reseedings. For example, medusahead is invading the cheat-

grass ranges of southern Idaho and eastern Oregon. Since this weed

remains green after the cheatgrass is cured it appears that a valid

spectral signature may be developed to indicate where the weed occupies

any significant part of the range. A signature of damage such as this

is, in effect, also a signature of harmful stress on more desirable
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vegetation. Just as clumps of beetle-killed trees may indicate the

beginning of an epidemic threatening timber production, so large clumps

of weds may indicate an epidem,,,,c nratening forage production.

In conclusion, as shown in the tables, there are small but sig-

nificant contributions anticipated from space sensing by 1980 in

evaluating forest and range damage. These contributions, mainly indi-

rectly through application no. 1, should indicate where damages to for-

ests and ranges are concentrated, rather promptly after major attacks

by such damaging agents as wind, fire, insects and disease. These

indications from space should greatly simplify planning and executing

surveys by air and on the ground needed to appraise details of damage,

since they would immediately narrow down the areas of interest to zones

of damage. Here again, as in other applications, multi-stage sampling

that integrates space sensing, aerial sensing and ground work (to give

ground resolution of several feet) may well be the economical method

of survey to reveal damage that is localized or where there are only

minnr, outward man festations of damage.
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16. Monitoring Livestock and Wildlife.

For several decades aerial surveys have been used for enumeration

of big game and waterfowl. Most of these have been by visual observa-

tions from low-flying planes. Some effective surveys have also been

made using large-scale aerial photography. Chapter 8 of the Manual of

Photographic Interpretation (2) discusses and illustrates a number of

successful censuses of big game and waterfowl made by photography from

low altitudes. Invariably these indicate situations where the back-

ground was relatively uniform and where there was no cover such as

trees or shrubbery to hide the wildlife: caribou and muskox on muskegs;

antelope and deer on prairies; ducks and geese on open water; spawning

salmon in clear, shallow streams, etc. Understandably there are no

illustrations of sensing where wildlife takes to natural cover: elk

in lodgepole thickets; deer sheltered in chaparral; trout lying under

rocks; or bass under lily pads.

Until recently, when research and testing began at the Forestry

Remote Sensing Laboratory in cooperation with federal and state agricul-

tural agencies, few attempts had been made to use aerial photography for

census of domestic livestock. The results of those studies (44),

even though preliminary, are encouraging, for application of photo-

graphic sensing over the agricultural lands which comprise a large

part of the universe covered on such periodic' surveys as those by the

Statistical Reporting Service of the USDA for the annual agricultural

outlook. Incidentally a related variation of this application is to

check number of animals by ownerships for tax assessment purposes. A

double sampling system with ground data taken on sample areas coincident



with photography should provide a means of adjusting the count upward

for animals hidden from aerial observation by trees or man-made shelters.

The surveys might not only indicate numbers of animals by type: horses,

cattle, sheep; they might also indicate probabilities of diseased

stock. Naturally, where cattle and horses (in particular) are lying

down there is a possibility of sickness, especially if animals are on

their sides.

The same studies indicated greater problems in using photographic

surveys on wildlands, primarily because of the greater abundance of

cover. Where cover is as considerable as it is on typical forested

ranges many animals would be hidden from aerial view at almost all

times of day. Thus the ground work that might be necessary for accurate

adjustment of photographic counts might approach that required for an

independent ground survey.

There has been considerable interest in using thermal sensing to

enumerate both wildlife and domestic stock. One successful test of this

technique was reported in 1968. This was over a deer enclosure in

Michigan (20). Infrared imagery in the 8-14 micron range was flown

at midday on a January day at a thousand feet above the snow-covered

terrain. There was approximately a seven degree differential between

the deer and background. This aerial census was in very close agreement

with the known deer population. In such situations, where one species

of game predominates and terrain is not obscured by foliage of conifers

or by deciduous forest in leaf, the method offers good results.

Theoretically, thermal sensing at night could reveal big game

grazing in forest openings in contrast to domestic animals bedded down
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(not always in cover, however). The hours near dawn and at twilight

might offer good opportunities to register gig game were it not for

the thermal washout and rapidly changing thermal conditions at those

times (refer to application no. 11 for a discussion of this limitation).

The possibilities of thermal sensing for inventories of livestock and

wildlife are intriguing, but there are complicating problems of successful

application due to numerous heat sources in forests and ranges: smoulder-

ing campfires, roads, cars, motorcycles, fishermen and hunters and many

other outdoor recreationists, variations in water--the ponds, the small

streams--cattle, elk, deer, the still-warm beds they may just have left.

True, the locations of some of those heat sources are fixed and their

identity may be known. But those made by man and by animals are not,

and for the foreseeable future it appears that under most situations

the best prospects for census of livestock and wildlife are the same as

they have been: aerial photography where the background is uniform

and unobscured, and visual observation where there is considerable cover

and variety of background.

The visual procedure has the advantage that it can be used in

weather which is unsuitable for photography; so that technique may be

used in the future more than photography. Canvasses of big game and

livestock are usually aimed at rather specific and limited times re-

gardless of whether the weather favors sensing. For big game the time

may be when the animals are congregating preparatory to migration or

are migrating; for livestock the time may be in early summer when

forecasts of fall market prospects are wanted. Another prime advantage

of visual, low level observation is that not only species but type of
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animal may be determined: whether male or female, adult or young, and

the breed. These items are extremely difficult if not impossible to

determine by any instrumented sensing. Furthermore, visual observation

may pinpoint quite accurately whether animals are indeed sick or merely

resting. A buzz at low level may confirm, whether an animal is really

sick--perhaps dying or dead. Also, as required, on-ground surveys may

be used to confirm or adjust visual aerial counts.

Incidentally, one useful variation of directed sensing under this

application is to check compliance of permittees with agreement to

graze specific numbers of animals on public grazing allotments. To

verify compliance with grazing permits this check, by aerial photography,

may be required twice each year, at the times the herds are moved on

and off the ranges.

It will probably be evident from the foregoing that there is no

prospective application from space in the near future for monitoring

livestock and wildlife. The resolution requirements are not achievable

by space sensing either for specific details or for useful spectral

signatures. Tables 1-3 indicate that for the foreseeable future the

data needed in this monitoring application must be obtained from aerial

surveys or work on the ground.
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VI. THE FOREIGN POTENTIAL.

Through arrangements with the United States any country in the

world may become a user of data collected by ERTS vehicles. Presumably

there will be a considerable difference between benefits of sensing over

forests and ranges in a highly developed, industrialized country and

those in a relatively undeveloped, or developing country. Hopefully

the material in Section V will be useful to readers attempting to appraise

potentials in countries with developed economies, bearing in mind that

the discussion in that section was aimed at the domestic situation and

may not specifically apply to a country with an economy dissimilar to

that in the United States., Subsequent discussion in this section

outlines some rationale and prospects in what are often termed "de-

veloping" nations. Although no line may be drawn around a distinct

group of developing nations, it seems useful to accept (as much current

writing does) that most of the nations in Latin America, Africa and

Asia fall within this group.

At this point it appears useful to make some generalizations

about developing nations. Their economies are not well industrialized,

although some segments of the economy in a particular country may be

well advanced. The resources of the forest lands are not well utilized

or are overutilized, even approaching exhaustion. Obviously, this means

that there is little or no management of those resources, except in some

regions in some nations. Per capita income in those countries averages

not more than ten percent of that in North America, and in none of them

does income of the average individual appraoch that in the United

States. Two thirds of the world's people now live in the developing
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nations and--more significant--the rate of population increase there is

twice the rate in the industrialized nations. According to a provisional

United Nation's report made in 1963, more than three quarters of the

world's population will be living in the developing countries by the

end of this century.

In considering the needs of the people in the developing nations

and their prospective demands, and, in turn, the prospects for appli-

cation of remote sensing in the next decade or so, there is one fact

that overshadows any other. In the foreseeable future the demands of

those people will be focused on human subsistence, in producing necessi-

ties for existence--food, water, and minimum fuel and shelter. With

this fact clearly overshadowing all others it is appropriate to consider

the specific demands upon the forests and ranges that are likely as

part of the much needed economic development programs in these nations.

Demands for the conventional five, multiple uses of forest and ranges--

for wood, water forage, recreation and wildlife--will first be considered.

Then the prospective use of remote sensing to help meet those demands

will be appraised.

Demands for Wood.

Since wood exports can provide valuable credits for international

exchange, foreign as well as domestic requirements for wood products

merit consideration. World-wide consumption of industrial wood (which

excludes that used for fuel) is increasing at about three percent per

year according to a study published by the FAO in 1967 (27). By far the

largest part of the increased use estimated up to 1975 will be in developed
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countries--about 70 percent of the total. During the near future per

capita use of wood in developing countries is estimated to remain at

its relatively low level--only one seventh of that in North America.

When total prospective demands are compared to total supplies

it is evident that there is an abundance of timber in developing

regions. Those regions embrace more than half the forest land on earth,

and,according to the FAO forest inventory (26), the rate of timber

removals for all purposes in the developing nations aggregates less

than one percent of the growing stock. Furthermore, since no estimates

have been made of timber volumes in many undeveloped regions, there is

an unknown, unreported volume of growing stock available which may

equal or exceed that reported (inferred from estimated area of forest

in regions for which no volumes were reported). Thus the ratio of

growing stock to timber removals in developing nations may be on the

order of 200 to 1. In the United States (essentially self sufficient

in supplying needs for wood), for example, the ratio is only about 60 to 1.

Utilization of the timber resource may require considerable ex-

pansion of transportation systems in some developing regions to meet

domestic demands for wood. Otherwise no particular forest management

measures may be necessary, particularly since a large part of those

demands will be for fuel, and for that use even low grade materials will

suffice. Increased exports of higher quality timbers may be anticipated

from some of the developing nations to help meet increasing world-wide

needs. A few favorably situated developing nations are expected to

profit substantially from exports to wood-hungry countries with advanced

economies. The Philippines and some adjacent southeast Asian nations

-149-



on accessible trade routes to the United States and Japan are examples.

But in most developing nations the exports of timber will probably be

limited, at best, to rather small quantities of very high grade materials.

The FAO report on world timber trends underlines this (27). So does the

latest report on timber trends in the United States (88) which indicates

that the lion's share of U.S. demands for wood imports in the foresee-

able future can easily be met by another advanced nation--Canada.

Only to meet a few requirements for high grade hardwoods for

veneer and other specialty use, will the United States and other in-

dustrialized countries be looking to the less accessible regions in

developing nations. Regardless, although by the end of the century

the use of hardwood for veneers and plywood in the U.S. is expected

to be approximately double that today, about half of those require-

ments are expected to be met by local supplies. The actual amount of

imports will depend largely on whether the prices for foreign timbers

remain at reasonable levels. The current estimate is that by the year

2000 the volume of those prospective hardwood imports will be less

than five percent of the total wood use in the United States and will

comprise less than 20 percent of the total volume of wood imports into

this country. The other 80 percent will be soft-wood sawlogs and pulp-

wood presumably from Canada. It appears, generally, that developing

nations have no better prospects for exports of wood to other industrial-

ized nations than is indicated by this U.S. example.

The foregoing indicates that world trade in timber products will

have some stimulating effect upon Forestry and forest industries of

some developing nations, but that the stimulus will probably be localized
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to comparatively accessible regions. In the foreseeable future the

main impact on timber resources of developing nations is bound to be

from domestic demands for wood. Since generally low quality timber will

meet domestic needs (much of the demand will be for fuelwood), it is

unlikely that there will be any universal pressures for forest manage-

ment merely to meet foreseeable objectives of timber production. Even

most developing nations that now are net importers of forest products--

such as typical countries of Latin America--should not require much

emphasis on forest management to become self sufficient. Some devel-

opment of transportation and local forest industry, either locally or

in neighboring regions, should eliminate any deficits in manufactured

items such as pulp and plywood that are now imported from industrialized

countries.

Demands for Water.

With increasing population and industrial expansion, the demands

for water for domestic and industrial purposes may be expected to

grow; thus the forest and ranges will be increasingly important as

watershed cover in developing nations. Although water quality standards

might not necessarily be raised (to approximate those in presently

developed countries), there will inevitably be emphasis upon regulation

of stream flow to insure the continuing quantity required for human

subsistence. And, along with more dams and other engineering structures

to insure delivery of water supplies to population centers, more water-

shed management may be expected in the upland forests and ranges.

The managers of those watersheds may tolerate turbid water yield as
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normal but they cannot afford to tolerate extremes of drought and

flooding or disturbances to the vegetation cover that will seriously

disrupt the water regime. Large-scale removals of forests may be toler-

ated in those tropical and subtropical regions where slopes are gentle

and individual clearings are small and not concentrated within short

time periods. Natural revegetation or prompt plantings of food crops

could minimize effects of runoff and erosion on such sites. On the

other hand large-scale disturbances to ranges are more likely threats

to watersheds. Although rainfall may be scant in many regions where

ranges are extensive, the precipitation may come, of course, in cloud-

bursts. And since revegetation--either artificial or natural--may be

slow, serious damages by alternate flooding and drying of streamflow

can result. This suggests that more management may be directed to

range than to forest lands in developing regions to insure continuing

quantities of water.

Demands for Forage.

Meat and milk rank first and second, respectively, in value among

farm products worldwide, according to the FAO of the United Nations (25).

Probably half the value of the world's meat and milk products is derived

from grains and crop residues. Nevertheless, their production is depen-

dent on ranges in many developing regions, such as the vast grasslands

of South America and East Africa. The FAO estimates that permanent mea-

dows and pastures occupy nearly one-fifth of the land on the globe--next

to forest, the most extensive land use on earth. Apparently forage will

continue to be the basis for life of people in many developing regions

in the foreseeable future.

-152-



Although some of these ranges no doubt will be converted to more inten-

sive agricultural use as pressure for food increases, by far the largest

proportion seem destined for production of range forage indefinitely,

since they are beyond reach of any foreseeable, economical system of

irrigation. Some of the savannas in more humid climates also offer

possibilities for good yields of forage indefinitely, with corresponding

justification for range management. Notable examples are the vast

grasslands of Argentina which provide not only meat for domestic mar-

kets but for export credits.

Demands for Outdoor Recreation and Wildlife.

The demands for these products of forest and ranges in developing

nations may be discussed concurrently since in large measure demands

for outdoor recreation and wildlife probably be generated by the same

group: foreign tourists. The great majority of local inhabitants

will probably be too preoccupied with a struggle for existence to be

concerned with recreation and wildlife developments--except as those

might induce cash from tourists. Exploitation of outdoor recreation

will apparently be focused primarily on a few resorts to attract

tourism from high-income countries. Such resorts as those in the Kashmir

of India and the high lake district of Chile and the nearby Nahuel Huapi

National Park of Argentina will no doubt continue to prosper and expand.

Establishment of recreation facilities in similar areas may be antici-

pated, but altogether such developments should fall far short of the

booming business in, outdoor recreation in the developed group of nations.

That phase of outdoor recreation focused on wildlife is unlikely
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to expand in developing countries. As the reader knows, the great big-

game hunting grounds of East Africa, Southeast Asia and Central America

are shrinking toward oblivion, with more and more of the habitat being

diverted to grazing by domestic stock and other purposes. That trend

will evidently continue so rapidly that within a few years the only

reminders of the habitats that attracted the famous safaris of yes-

terday will be such showcases for nearly extinct animals and birds as

the Malaysia National Park, The Kruger Game Reserve of South Africa

and the Serengeti National Park in Tanzania. With this in prospect,

land management for recreation and wildlife purposes in the developing

nations must obviously be relegated to very limited parts of the forest

and range universe.

Demands for Land Clearings for Food Crops.

Gains in productivity through fertilization and other intensive

management on existing fields, imports from countries with agricultural

surpluses, and increased range forage will undoubtedly help developing

nations meet their needs for food. Nevertheless, conversion of large

amounts of forest and range lands apparently will be needed also to

prevent growth of population from outstripping food supplies. Accord-

ing to a FAO report (25), "...if 20 percent of the unused tropical

soils were used for cultivation, the...arable area in the world would

increase by about 40 percent". Evidently, then, extensive areas of

forest and range are destined for conversion into intensive agricultural

uses in tropical regions.



Prospective Sensing Applications.

At this point there is no need to go into general usefulness and

techniques of the major kinds of applications discussed in Section V,

but it is appropriate to briefly review those applications in the light

of the prospective environment of developing nations just discussed.

The writer suggests that nine of those sixteen applications will be

relatively unimportant at least through the 1980 time period. The

opportunities for applications number 5 and 6 (inventory of recreation

and wildlife habitat) will be in very limited areas; and numbers 9,

10 and 11 (the applications on detection and control of fires) will

hardly be of critical concern in economics not dissimilar to those

during the period of settlement of North America--where fire was looked

upon as a tool for land clearing, not as a threat to forests. There

will be exceptions, of course, where fire control organizations will

operate, as on critical watersheds. Application number 12, "Monitoring

Air Pollution..." is unlikely to be called for until the developing

nations achieve a much higher degree of industrialization with associated

atmospheric poisons which would seem to be far more serious threats

to populated areas than smoke from forest and range fires. Application

14, "Monitoring Snowfields", is hardly relevant in the mild or tropical

climates of most developing nations. Applications number 7 and 15 (monitor-

ing large management units and evaluating damages) cannot be especially

important until resource management is applied more intensively. Where

ranges are extensive, however, application number 15 offers a promising

technique for appraising actions to restore full production after damage

to forage.
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The seven applications with best immediate prospects in developing

areas, are numbers 1-4, 8, 13 and 16. Among those applications,

numbers 1 and 2 on land classification stand out. Partly this is

because of indirect contributions made by establishing main area

parameters for estimating various subclasses of forest and range lands--

the kind of contributions indicated by footnote 3 in Table 1. But the

main contribution of applications numbers 1 and 2 should be by indicating

extent and location of some areas most suitable for agricultural clear-

ings. Although the criteria for classification of some lands suitable

for agriculture may only be recognized by examination on the ground (per-

haps through soil sampling), other criteria may be recognized by remote

sensing--gross physiographic features of cover, drainage, slope character-

istics, etc. Some of those physiographic features should be apparent

even on the telemetered space imagery anticipated by 1980. As illustra-

tions, land classes are cited for two localities in developing regions--

the first in the tropical lowlands of Pet'en in Guatemala with which

the writer is familiar, the second in northeastern Argentina described

to the writer by Prof. Merle Meyer of the University of Minnesota and

which is a region he is familiar with.

In the Peten of Guatemala and adjacent parts of the Yucatan in

Mexico, at least four significant land classes may be recognized on

telemeted imagery because of their extent and anticipated differences

in spectral signatures (due to characteristic patterns): (a) dense

forest on rocky limestone hills; (b) open scrub forest in poorly drained

bajos; (d) dense forest on well-drained lowlands; and (e) savannas.

The first two classes have low potential for either food or wood produc-

-156-



tion. In "a" slopes are so steep and rocky that logging is economically

questionable; if cleared for agriculture they could be subject to serious

erosion and rapid decreases in fertility. In "b" obviously wood pro-

duction is poor and, since drainage doesn't appear feasible, prospects

for agricultural production are very limited. The third land class

contains the most productive forest lands and presumably those most

suitable for production of food crops. It may require both aerial sensing

and ground examinations to subdivide this broad class into areas more

suitable for agriculture than for timber production. The fourth land

class might also be cultivated, although economic studies could reveal

that it is more valuable as natural pasture since it is a good forage

producer.

In northeastern Argentina there are also four significant land

classes which should be evident on telemetered space imagery: (a)

upland, open,scrub forests (monte); (b) upland grasslands; (c) poorly

drained lowlands (banados); and (d) esteros--extensive, even, -lower areas

with standing water. To some degree all these classes produce forage.

The first class might best be retained for extensive grazing and fuelwood

production. The second class is suitable for producing various food

crops. Since there are no economical prospects of drainage of the last

two classes, the best possibilities for conversion to agriculture may be

through cultivation of rice.

Sensing from space should contribute to applications numbers 3

and 4, "timber inventory" and "range inventory", in developing nations

in the near future mainly through furnishing area parameters relating

to the land classification applications. In many developing regions
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it is possible that the detailed inventory of timber volumes by various

categories, so useful in more advanced nations, will not be particularly

useful. Thus essentially the only likely contribution by remote sensing

will be confined to gross land classification. There is no point, of

course, in a detailed inventory for timber management purposes if the

natural forest is to be cleared and replaced by either food crops or

by plantations of exotic trees (e.g. the common, economical, silvi-

cultural method in the tropics of replacing native rain-forest mixtures

with pure stands of teak). And even where high-grade timbers are selected

and marketed as the native stands are liquidated, this selection need

not require an inventory--only salvage of the most valuable trees as

the land clearing proceeds. Also even where a detailed inventory

appears justified so that logging may be oriented to selection logging

of the most valuable timbers, remote sensing faces obstacles in tropical

forests much greater than those in most temperate forests. Aside

from weather which may preclude photographic sensing over long periods,

the forest is so complicated that the prospects are not good of develop-

ing useful spectral signatures for stands containing the premium trees

demanded by the export market. Readers acquainted with tropical rain

forests will appreciate how complicated the species composition may be.

There may be several dozen species on each acre, no two acres identical

in composition for miles on each side, with perhaps 500 species found

within a fifty mile radius, and yet with transitions so gradual that the

acres on the extremes of that radius may have several species in common.

Furthermore some of the most valuable species may be nearly obscured from

overhead view by the luxuriant foliage of other less valuable trees:
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Spanish-cedars or mahogany in Central America almost hidden or inter-

twined by wild-figs or other much less valuable trees, for example.

Because forage may well be more valuable than timber in many

developing countries, there may be considerably more use of aerially

sensed data to complement that sensed from space for range surveys

than for timber inventories.

Aside from sensing for land classification purposes the next

most important application of sensing over forests and ranges of devel-

oping countries may be to detect stresses--provided the needed spectral

signatures are developed. The good prospects for this application over

range lands relate, of course, to the general value of forage. But

for timber lands also, during the developmental period of the fore-

seeable future, it will be important to give a measure of protection

even though exploitation and inventories of them may not be scheduled

for decades. Lest this view seem to contradict one expressed earlier--

that fire protection applications of sensing will not be important--

the significant difference might be underlined between the impact of

fire and those of insects and disease upon vegetation resources.

There can be no doubt when fires are occurring, and when they begin to

reach intensities and frequencies that threaten serious damage the only

question is whether the observers care enough and have the capability

to control them. On the other hand attacks by insects and disease

usually come without any spectacular warnings to draw the attention of

even concerned observers. And without some continual surveillance to

detect stresses, such as that from a rather sophisticated system of

sensing, wide-spread and serious damages can occur before resource
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managers are aware that control is appropriate--even when they have both

interest in and capabilities for control.

What is needed in many regions that are developing or awaiting

development is the kind of sensing application that could have prevented

such a catastrophe as the one that moved across the forests of Honduras

between April 1963 and April 1964. Before anyone was really aware of

the immensity of the damage and before control could be taken, beetles

had destroyed 20 percent of the pine growing stock in the nation--some

of the choicest sawtimber in the western hemisphere. It has been esti-

mated that if the exportable portion of that lost timber has been marketed

it would have brought an equivalent value of more than 75 percent of the

GNP for Honduras in 1964 (28). Undoubtedly had there been some overall

sensing surveillance in operation in Honduras during the sixties,

similar to that discussed under application number 8, with frequency

of approximately semi-annually, a large proportion of those losses

could have been prevented. There was some local interest in and

capabilities for pest control in Honduras, and through support by

outside agencies--AID and FAO--there should have been opportunity

for control measures to blunt the main force of the insect attack--had

there been prompt warning of an epidemic of beetles.

Another potentially important application in developing countries

is number 13, "Monitoring Water Cycle, Pollution and Erosion". Whether

any comprehensive monitoring in developing countries is foreseeable

similar to the idealized application in developed nations discussed in

Section V is questionable. Nevertheless, over watersheds in those parts

of developing nations where population is concentrated there are prospects
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that data derived from both space and aerial sensors will prove very

useful in appraising flood threats. By the same token, that phase of

application number 15, "Evaluating Damages..." pertaining to damage

by flooding may also be applied usefully. To that extent the rather

poor prospect which was projected earlier for application number 15

may be upgraded.

Application number 16, "Monitoring Livestock and Wildlife" should

also be a useful one in regions where grazing is a primary activity.

Although this application should be a useful one in the same regions

where application number 4, "Range Inventory" is used, it is unlikely

that these two applications may be performed concurrently. The reader

will recall that resolution requirements are different for these appli-

cations. Also application number 16 is required on a directed basis

whereas the other application lends itself to periodic, sequential

coverages.

In conclusion it may be emphasized that while there are prospects

for exploitation of some sensing applications to great advantage in

developing nations, these prospects may not be realized in as early a

time frame as those proiected in more advanced nations. This is because,

regardless of whether the state of the art in sensing and data handling

advances at the rate assumed in this study, resource managers in devel-

oping nations may not be in a position to take advantage of sensing tech-

niques. Whether they can take advantage of the state of the art in the

80's as early as the 1980's will depend largely upon two limitations:

(a) the progress in collecting and coordinating ground truth in developing

nations with sensor responses and (b) the degree of acceptance of remote
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sensing potentials by the authorities who determine budget expenditures

for resource management in developing nations. Both of these limitations

are reflected in the recommendations for research and development

outlined in Section VII. Evidently it will take a great deal of effort

to overcome these limitations, or minimize them.

With respect to ground truth in developing nations, the reader

will appreciate that very little research has been done (compared to

that in advanced nations) on the native vegetation and only meager

beginnings have been made in attempting to tie the plant physiology,

ecology and microclimate of forest and range associations to spectral

responses that sensors might pick up. Even some of the best of these

small beginnings have been overlooked, apparently, in the cooperation on

the two initial foreign test sites for earth resources survey sponsored

by NASA (59). The writer understands that in neither Brazil nor Mexico

were official arrangements made for local forest or range specialists

to participate when U.S. representatives of earth resources disciplines

visited those countries to arrange for sensing test sites. Only through

happenstance and initiative on the spot by U.S. foresters were arrange-

ments made for some forest coverage by a NASA sensing vehicle. In

Brazil, fortunately, arrangements were made to cover some plantations

of an exotic species--Eucalyptus--in conjunction with coverage of terrain

that was primarily agricultural. Unfortunately, that forestry test

site is far removed from the vast, tropical forests of the Amazon Basin

where one of the most challenging opportunities for remote sensing of

forests on the globe is located. In Mexico, fortunately, arrangements

were made for a test site in some of the valuable pine forests in the
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highlands. At the same time, unfortunately, there are yet no arrange-

ments for a test site in the extensive and relatively unknown, but

valuable, tropical forests of the Yucatan Peninsula. This oversight

is more unfortunate in view of the fact that Mexican foresters (gen-

erally well trained and competent) are among those who have taken con-

siderable interest in tropical forestry. This is evidenced, in part,

by some good publications on the subject issued by the Instituto

Mexicano de Recursos Naturales Renovables. It is evidenced, also, by

experimental work in the forests of Yucatan during the mid 1960's by

the staff of the cooperative forest inventory project financed by the

Mexican Government and FAO. In the Yucatan area detailed field infor-

mation was being gathered on timber species and composition; also aerial

photographic flights were projected using several film-filter combina-

tions aimed at determining the most suitable one for evaluating the

timber resources.

The foregoing not only indicates opportunities that might be

capitalized on in the future, it also emphasizes that high government

officials must be sold on the value of remote sensing and the scope

of its potentials; otherwise profitable cooperation on a technical level

is not possible.

In closing this section it may be noted that one of the important,

intangible benefits of any applications of remote sensing in developing

countries can be the education of people in the need to conserve and

manage natural resources. And it is quite possible that some investments

in remote sensing--possibly by outside interests such as the United Nations

Development Program--will pay good dividends in advertising the magnitude
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and condition of the forest and range resources of developing countries

and dangers which threaten them. Remote sensing may be an effective

vell-cle foiV te edUucat'on so sorely needed to overcome apaLrly oward

management of resources. Only after that apathy is overcome may some

appreciable share of the national effort be allocated to resource manage-

ment. And then sensing may begin to play a continuing role even in

those nations where, for the foreseeable future, allocation of funds will

be primarily to prevent starvation.
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VII. RECOMMENDED RESEARCH, DEVELOPMENT & TESTING

Two logical frames of reference for this section are the NASA

"Earth Surveys Program Documentation (60) and the USDA "...Program

of Research for Remote Sensing" (80). The first document is largely

devoted to plans and proposed schedules for launching, orbiting and main-

taining data gathering capabilities for earth-orbiting satellites. It also

discusses some aspects of sensing systems which are primary concerns of

data using agencies in earth sciences. The following is a pertinent

quotation from that document which suggests how research by user agencies

might be directed to capitalize on space sensing in the near future:

"in all of the Earth Resources Disciplines, effort must be devoted to:

(1) The development of rapid means of reducing raw sensor data to multi-

spectral signatures of significant phenomena and features; (2) The es-

tablishment of statistical measures of the significance of such signa-

tures; (3) The conduct of pattern recognition and feature extraction re-

search on multispectral signatures; and (4) The establishment and main-

tenance of a comprehensive library of selected flight data and multi-

disciplinary ground truth data collected over test sites."

Implicit in the foregoing is the same viewpoint which evidently

influenced the decision on the three top priority areas for research

outlined in the USDA program document; namely (a) Laboratory Research,

(b) Application and Information Systems Analysis and (c) Airplane

Measurement Research. The emphasis in "a" is on research in the basic

theory and empirical approaches to a better understanding of spectral

responses of both reflected and emitted radiant energy from plants.

In "b" the emphasis is on data acquisition and data handling and analysis.



In "c" the emphasis is on more research and testing of spectral signatures

from high enough in the atmosphere so that operational application from

space is simulated.

Research and development in the areas recommended in those docu-

ments should favor exploitation of the forestry and range applications

believed to be most feasible from space. And unless such research is

given priority,financing of the proposed series of ERTS vehicles does

not appear to be justified. In the remainder of this section some

suggestions are given on how research and development might be oriented

to serve the forestry and range disciplines in the near future.

Signature Research

Disproportionate amounts of effort have been put into instruments

for sensing and into collecting sensor responses. Relatively little

effort has been put into research to determine what the data collected

by the sensors mean. And the only way in which those responses can be

translated into meaningful signatures is through many tedious man hours

in the ground environment.

Research on spectral signatures should be pressed with a real sense

of urgency. Very few tentative "signatures" have been researched, and

there have been no replicative tests aimed to establish the "normal"

signature for even one of the important forest-range associations in the

country. Furthermore, efforts to establish sensor signatures for specific

stresses on forests due to their greatest enemies--disease and insects--

are apparently limited to only a handful of investigations, including those

on three root rots (90, 64, 65) and the Black Hills Beetle (40).
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Hopefully, prospects expressed by the NRC panel on forestry-

agriculture-geography (61) may be realized in the near future and that

"...sensor--signature research...has the potential of yielding dispro-

portionately great returns for a relatively modest inventment..." This

may be a realistic statement of prospects insofar as sensing of agri-

cultural crops is concerned; but the writer is not optimistic about

"great" returns that are in prospect for a "modest" investment in sensor-

signature research in the forest and range disciplines.

The approach to multi-spectral research at the Laboratory for

Agricultural Remote Sensing (51) will contribute undoubtedly, to the

forestry and range disciplines by providing automatic signature identi-

fication by optical-mechanical scanners for some major land classes.

However, the brunt of research to develop useful signatures on signifi-

cant breakdowns within the universe of forests and native ranges must

necessarily be carried by organizations and institutions concerned with

forest and range disciplines. Regardless of whether the LARS approach to

signature identification (by means of a multi-spectral scanner in flight)

proves to be the most feasible for sensing of forest and range lands,

the basic LARS takeoff from a well established base of ground truth appears

to be the realistic course for research.

Assuming the LARS approach is sound, the most stable sites on which

to conduct any research investigations in the forestry and range dis-

ciplines would be established experimental or demonstration forests and

ranges. In such areas there are large reservoirs of ground truth.

According to the observation of this writer not every so-called research

study in remote sensing has been based in such a favorable situation.
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He would, however, cite several examples of what appear to be good bases

for studies. The University of California made good use of its water

tower at Davis on a number of preliminary studies to develop research

and testing procedures, even though the tower and its surroundings had

no resemblance to anything in the real world of forests and ranges.

Also the University of California group made effective use of the large

background of survey and observation data available at its summer forestry

camp in the Bucks Lake and Meadow Valley vicinities. That was a better

crossection of Sierra conditions than anything else under U.C. surveil-

lance and for those reasons was chosen as a NASA test site. The Forest

Service made use of ground truth at several of its experimental areas,

including, for example, the Challenge Experimental Forest which is used

by Langley and his co-workers (53) and the Wind River Experimental

Forest used by Wear in his research into sensing forest diseases (90).

If the writer were to emphasize any element in this study that

overshadows any other it would be the importance of ground truth.

Without reliable ground information there is virtually no prospect of

effective sensing from space. Furthermore, to determine ground truth

and to key it appropriately to data obtained from aircraft or spacecraft

will probably require more effort and expense than any other phase of

research and development of sensing for forestry and range purposes. It

is expensive enough for LARS to obtain the ground truth for crop identi-

fications. First there must be laboratory analyses to indicate the basic

spectral responses for healthy and unhealthy vegetation of various cate-

gories. Then there must be responses and tentative signatures developed

by sensing from cherry pickers only a few feet above the cultivated
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crops on the Purdue experimental farm. Then that information must be

related to what happens when the sensors are thousands of feet or many

miles away from the crops being sensed. Those agricultural situations

are simple compared to those encountered in the universe of forests

and native ranges. Since agricultural crops are in man-made fields,

they have regular patterns and boundaries. Also there are relatively

few important crops: wheat, oats, rye, cotton, etc.,compared to the many

variations in types of natural vegetation. Agricultural fields are also

accessible. Furthermore a cherry picker technique is not practicable

when close surveillance of forest is wanted for research purposes.

As a minimum, forest researchers must probably think of hovering with

helicopters or tethered balloons at low altitudes.

Research in sensing techniques to identify food crops is obviously

far more important than research to identify forest types. The amounts

of Douglas-fir and Lodgepole pine and shortleaf pine in the growing stock

may consume the interest of a forester; but those estimates don't begin

to approach the significance of whether wheat, or rice, or corn may be

plentiful enough for purchase by the man in the street Since fiber is

outranked by food in the priorities naturally there are fewer dollars to

allocate to research in forestry than in agricultural applications of

sensing, regardless of the complexity of identification problems in

the forest universe. Thus it is imperative to concentrate research in

the forestry and range disciplines on those signatures which are both

relatively easy to establish and which are also most significant. At the

same time note might be made of the suggestion in the study on potential

benefits of remote sensing by the Cornell group (13) and in the summary
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report on remote sensing by the Economic Research Service (82) that

remote sensing might contribute more to range than forestry applications

since !!there is so much room for improvement and because the management

of range land is so dependent upon timely information". Also, of course,

forage contributes rather promptly to the supply of human food.

Some questions which sensor-signature research should aim to resolve

are suggested by the pioneering research on natural vegetation recently

done by Lent and co-workers at the Forestry Remote Sensing Laboratory (56).

In that study "signatures" were noted for several classes of lands:

timber, brush, grassland, roads, etc.; also for three different kinds

of brush which, by ground examination, proved to be based on differences

in species composition. The term "signatures" is enclosed within quota-

tion marks advisedly. As yet there has been no opportunity through

testing to replicate results and so to verify whether separate, distinc-

tive signatures have been established for the broad land classes or for

the types of brush.

Assuming that a distinctive signature is established for each type

of brush, the use of each signature in a sensing system should not be

automatic. Its use should first be justified as economically important,

bearing in mind that only significant data should be incorporated within

the system when there is always a danger that a flood of data may

saturate the system. The economic justification may rest on empirical

judgments. For example, if one of the types of brush is known to grow only

on sites where timber-growing is judged to be a more valuable land use,

it may not be difficult to get support by resource managers to underwrite

reasonable costs of survey charged to sensing for the amount of that
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potential timberland occupied by brush. If one of the types of brush

represents a valuable forage for big game or is a volative source of fuel

it may not be difficult to get support by resource managers to underwrite

cost of collecting information on its distribution as a basis for

wildlife management or fire protection planning. If--on the other hand--

the several types of brush are judged to be of similar economic importance

--regardless of interest to people who are not prepared to invest money

for data collection in some particular type--all types might best be

treated as one composite universe in data handling.

Considerations on whether a signature is both distinctive and econom-

ically important might best be made concurrently, rather than sequentially

as might be implied by the foregoing discussion. For example, with respect

to the brush types, if initial considerations showed that a specific

kind of brush had no particular economic significance, there should be

no reason for pressing expensive investigations to establish a distinctive

signature for that kind of brush.

A somewhat similar situation is posed by the group of five,well-

known southern pines. Aside from the resin derived from two of these

species, the products of these trees may be grouped within one common

category in the marketplace. It may be argued that research aimed at

establishing separate, distinctive signatures for loblolly and shortleaf

pines would be questionable (to cite two species which have no economically

significant resin contents). On the other hand it may be argued by

range and wildlife managers that stands of these different species of

pines indicate significantly different habitats for livestock or wildlife.

The understory in a stand of longleaf pine, for example, may be an optimum
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habitat for certain game birds and animals as well as domestic livestock.

These several considerations indicate how important it is to weigh prior-

ities for signature research even in situations where offhand judgment

suggests that search for specific signatures within a rather broad uni-

verse is not justified.

In the same context, but focusing on the Pacific side of the country,

research to establish distinctive signatures for both Ponderosa and

Jeffrey pines should be seriously questioned even though stands of each

species are abundant on the Pacific Coast. As with southern pines, it

may be presumed that such research faces what looks like an extremely

difficult problem, if all stands of each species regardless of vigor and

age or size are to be differentiated. And, as with southern pines, the

wood of Ponderosa and Jeffrey pines is sold as one product.

To emphasize problems even within what might be considered as an

uncomplicated universe, reference is made to pages 25-37 of the LARS

bulletin (51). That illustrates the difficulty in establishing distinc-

tive signatures for such important cultivated crops as alfalfa, oats,

wheat, and clover. On one occasion, for example, there was no explanation

for identical "signatures" for oats and alfalfa. On another occasion

red clover and weeds exhibited identical "signatures", and on still

another occasion the presumed "signature" for red clover was recorded

from a field containing "areas of pasture, alfalfa and...soybeans."

Incidentally, the foregoing illustrates why it is hardly appropriate to

claim a "unique" signature for a sensor response to anything. The best

that may be anticipated is a high probability that a "signature" will be

'"distinctive" throughout the universe to be surveyed.
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It is hoped that the past years of investigations on experimental

forestsand ranges will provide a substantial basis for the spectral

signature research referred to in the first of the three priority areas

of research mentioned in the USDA program document. Some researchers

believe, however, that there are many large gaps in research in plant

physiology, ecology and microclimate which must yet be filled, since

very little past work was keyed to energy reflected and emitted from

plants under various stages and conditions of growth. One of the few

exceptions to this has been the research in plant anatomy related to re-

flectance characteristics by Olson, Weber and co-workers at the Univer-

sity of Michigan, described in several progress reports to NASA (91, 64,

65). The magnitude of the gaps in research will not be known until a

concerted effort is made to determine the applicability of past research

to remote sensing. And even if there are large gaps to be filled, the

future research task should be least when applied to experimental

forestsand ranges since advantage may be taken of detailed inventories

of vegetation and records of growth which are not available in other

areas. Without such an advantage the task is staggering. It is appalling,

regardless, considering how insignificant a proportion of the domestic

forest and range universe is now represented within NASA test sites and

within those very few other experimental areas where remote sensing

investigations are now oriented.

It is appropriate here to quote from the report of one researcher

who has faced the problem of trying to establish recognition features,

if not signatures, for forest associations which are mixtures of species

(quite common associations, of course). Lauer reports (54) that "...in

mixed stands...there tends to be...variability of tree tone or color
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within a...species...greater than the tone or color difference between

different species. Consequently tree morphology...must be the primary

means of identification; image tone or color is of secondary importance..."

Lauer goes on to point out that "multi-stage sampling can help in ob-

taining tree inventory data for heterogeneous mixed forest stands".

Yet with respect to specific use of multi-stage sampling (which includes

the use of large-scale photography) he goes on to say that the number

of trees by species may be seriously underestimated. Furthermore, he

asserts it is "'...nearly impossible to distinguish between incense

cedar and ponderosa pine on both large and small scale photos..."

It should be noted that Lauer was trying to develop clues to inter-

pretation which an experienced interpreter might recognize. Those are

not exactly comparable to signatures which might be used in data analysis

by machines. The writer's experience substantiates the conclusions by

Lauer. He would add, only, that there is a strong probability that

establishing meaningful signatures for forest and range associations

will be much more difficult than establishing recognition features

which a good interpreter may intuitively use without formalizing the

reasons for interpretation decisions.

One important aspect of signature research must be to determine

whether more than one signature (and how many) is needed for each feature

to correspond with several sensing variations of an application. For

example, with respect to photographic sensing, assume that coverage is

planned (perhaps on a sampling basis) from three different altitudes:

perhaps from space platforms, from high-flying jets, and from low level

aircraft. To perfect an application, at least one set of signatures
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might be needed for each of the following: for rather even tones as

registered from space, for contrasting patterns of tones registered

from high altitude flights, and for contrasting, detailed patterns of

light and shadow registered from low-level flights. To complicate this

research further, signatures might be needed for each altitudinal level

of sensing to represent significantly different illuminations of features.

The reader will recall from the assumptions for this study that details

imaged from ERTS vehicles are scheduled to be illuminated with sun

angles giving informative shadowing of details. Inevitably the sun angles

will vary significantly by season; thus so will the shadowing of details

with consequent effects on signatures. Whether one signature or a few

may suffice for identification of a particular feature, there must be

investigation of the possible sources of variation. And when the possi-

bilities just mentioned are added to the possible variations due to

geographic variability in each forest association (such as the Douglas-

fir) with all its component age and site classes, signature research

cannot be done except by a formidable, well-organized effort.

It is suggested that whenever it becomes evident that the prospect

of obtaining the signature for a forest association is bleak it would be

desirable to orient the research to another objective. For example, to

take a hypothetical but not unrealistic situation, suppose the spectral

responses were similar from typical stands of lodgepole pine and over-

stocked, stagnated stands of ponderosa pine. The researcher might be

advised to move on to a more likely prospect, assuming that the differ-

entiation between those stands with quite similar or identical sensor

responses must needs be resolved by field work (as a phase of multi-
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stage sampling, perhaps) unless an experienced interpreter could discern

the differences. Presumably spectral signatures will be developed in the

not distant future which will allow identification of a number of cul-

tivated crops with good reliability (perhaps 95% of the time), especially

if sequential coverages and "crop calendars" are fully exploited. Within

the same time period it is likely that valid signatures will be estab-

lished for only a small proportion of the thousands of important forest

and range associations. For the foreseeable future this suggests that

a large proportion of the actual data analysis in forest-range disciplines

must be done by humans.

The writer does not presume to recommend specific priorities for

research on spectral signatures since those are decisions which must be

made by the administrators of research funds. Nevertheless if the reader

accepts the rationale outlined in this study and the prospects for

applications that are indicated in Tables 1-3, he will probably agree

that research should be pushed to establish spectral signatures for all

major land classes (forest and grasslands, etc.) and for major subclasses

of natural vegetation such as the Douglas-fir, pinyon-juniper and sage-

brush associations. Hopefully, he will also agree that priority should be

given to developing signatures for serious damage to or stress on the

vegetation caused by such destructive agents as fire, insects, weather

and disease. These might exclude signatures for those agents for which no

effective control measures have been devised--e.g., Dutch Elm disease--

except as those may be necessary for identifications to prevent confusion

between "significant" and "nonsignificant" signatures. Presumably the

reader will also agree that signatures to indicate significant effects on
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vegetation due to man's activities--e.g., logging, land clearing--will be

very useful also. Incidentally, the effort required to establish sig-

natures for some of these activities may be less than to establish sig-

natures to differentiate many significantly different vegetation associa-

tions. Indeed not only might recently logged stands be differentiated

from uncut stands but several classes of cutover areas significant in fire

control planning might also be differentiated, for example. These classes

are: where no slash disposal has been amde, where slash has been piled

but not burned, and where slash has been disposed by prescribed burning.

This presumes that over sizable areas--such as clearcuts of 40 acres

or larger--there will be distinctive patterns for each class, due to

differences in shadow details, which will be reflected in distinctive

signatures. It may be pointed out that clearcuts of 40 acres or larger

should be distinctive even on the telemetered imagery from space expected

by 1980.

Still with no intention to indicate rigid priorities, but keeping

in mind the desirability of establishing signatures which are now econom-

ically important, the writer suggests an approach to priorities for sig-

nature research which should be useful in the forestry discipline.

Insofar as possible, research to establish signatures for the broad

vegetation associations listed below would appear to be justified from

the standpoint of timber management in the United States, if for no other

reason. Signatures for both healthy and "sick" stands are needed, of course.

Two criteria, only, were used as guides for this listing: the estimated

area extent (percent of the U.S. forest universe occupied) of an association,

and the estimated proportion of the Nation's growing stock represented by
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the key species for an association. These criteria were derived from

the latest comprehensive report on the Nation's timber resources (88).

The writer rates those associations at the top of the list more impor-

tant than those at the bottom from a judgment evaluation of the combined

criteria just cited. Even if the reader accepts that judgment, it is

probable that he can think of other criteria (based on other forest values)

which may well change the relative ratings of those priorities. Further-

more, obviously there are other associations (such as those from primary

range vegetation) that also merit priority for signature research.

Major vegetation association

Oak-hickory & oak-pine
Loblolly-Shortleaf pines
Douglas-fir
Ponderosa-Jeffrey pines
Bottomland Hardwoods
Longleaf-Slash pines
Northern Hardwoods (Beech,

birch, maple)
Aspen-birch
Lodgepole pine
Eastern spruce-fir
Western spruce-fir
Hemlock-Sitka spruce
White-Red-Jack pines
Sugar, Western white pines

Percent of forest
area in U.S.

28
12

7
7
11

5
7

5
3
4
3
2
2

1

Percent of timber
growing stock in U.S.

6
7
17
7
3 plus
2

Less than 1

Neglig.
3 plus
Neglig.
1 plus
10

Neglig.
I plus

Testing for Validity of Signatures

Another effort which will require many thousands of man hours on

the ground as well as considerable expenditures in aerial sensing is in

testing to establish validity of tentative signatures. Virtually nothing

has been done on this phase. Furthermore, there is a real danger that
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this phase may be slighted so much that automated analysis of sensed

data may be discredited by attempts at operational applications which

produce intolerably erroneous results. The basis for this concern is

twofold. First is the traditional difficulty in getting photo interpreters

to subject their judgments to statistical evaluation. The technical

meetings and literature on photo interpretation are cluttered with so-

called "research results" which were based on one man's judgment under

one set of photographic and field conditions. This difficulty is com-

pounded by the problem of organizing enough manpower on a research study

so that there can be a valid statistical evaluation of differences in

results due to interpreters. Second is the reluctance to replicate tests.

In this connection it may be noted that only two of the twelve latest

annual reports of progress during 1968 on NASA-financed sensing studies

in the forest and range disciplines mentioned plans for replicated testing.

No doubt, most of the work plans contained at least general schedules for

such testing. Nevertheless, unfortunately, both the importance and

amount of work required for adequate testing evidently were discounted.

The results of human interpretations not substantiated by tests

may well be questioned, and results of any machine interpretations will

hardly be worth reading unless the signatures used in the procedure have

been adequately tested. At least an experienced interpreter can temper

his decisions with solid judgments, knowing, for example, that the images

of many dissimilar stands may be so similar that the eye cannot discrimin-

ate them. Except on extremely large scales of photography, for instance,

who can determine where true fir is the predominant and not the minor

species in the transition zone with Douglas-fir in the Pacific Northwest?
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An experienced interpreter may make this determination, perhaps, not

because of differences in images of the two species, but because he

knows the detailed topographic situations most favorable to each species

which may not easily be incorporated as parameters for machine analysis.

Users should be wary of any results of analysis by an "idiot machine"

which has been programmed for signature readouts unless the signatures

have been carefully tested using replicating samples by sensors coordin-

ated with field checks.

The reader will appreciate that the coordinated check of sensor and

field samples will be a difficult enough job in an experimental forest

where a detailed map showing subtle but significant difference in the

forest cover is usually available. He will also appreciate that the

man hours required for each check will be much greater when the test

(as it sh6uld be) is in a forest situation where there is much less

ground control. For, regardless of whether some advantage is taken of

such aids as helicopters to reduce travel time, there must usually need

to be work on the ground if only to determine whether the test sample is

in a healthy stand or one under stress.

Developing Data Handling and Analysis Techniques

As compared to the signature problem, the effort to solve the data

handling and analysis problem begins with several advantages. There is

a wealth of highly developed hardware, and suitable software techniques

and knowhow--all of which can be geared to the problem. Nevertheless,

the task in that area is tremendous, and the feeling of those who are

seriously considering the problem is that much more money must be spent
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on data handling and data analysis than on data collection. As the

recent NASA program document emphasized when describing the ERTS system,

"...it's most awesome potential aspect (is) the ground data handling and

interpretation..By comparison the space segment...will be cheap and

simple by today's technology" (60).

Without presuming what form the data handling structure for earth

resources space and related data will take, the writer assumes that there

will be a large central data handling facility, such as described in the

NASA program document, to index and store earth resource data obtained

by space sensors. It seems quite unlikely that ultimate major users,

such as the Forest Service and Bureau of Land Management, would want to

record all data in real time transmitted from space. Regardless of whether

major users in forestry and range disciplines prefer to duplicate all

material of interest from that central data bank and handle all their own

analysis, it would seem important that they spell out the specific kinds

and forms in which they want to retrieve data. This means specifying

what items of data they want from every sequential coverage in off-line

readout and in what format; and what data they will require only on

request. The important requirement for identification of data by geographic

locality is not unique to forestry and range disciplines. Presumably

there will be some standard method for such identification for each cell

of data. Yet users of data on forests and ranges must decide what their

minimum needs are for geographic referencing long before the central

data facility operates or they may find the reference system inadequate.

Some important questions of particular concern to major agencies

using forest and range data are how to efficiently handle dissemination
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and analysis of data internally. In the Forest Service, for example, at

what level, or what levels,should the storages be maintained for all

data required for an application: that from space, from aerial collecting

and from ground surveys? Should there be one master repository, or

several, in the Forest Service for the sensor signatures? Or should

al! those data be stored at the NASA central facility, for example?

The answers to these questions should be determined at the same time that

the main (NASA) depository for space data is organized. And the

answers, obviously, can be satisfactorily obtained only through a

systems design study made for each major using agency (public and pri-

vate). Apparently there is need for a data handling and analysis sub-

system for the agency which takes maximum advantage of the government-

wide system tied to the central data facility.

Since data handling and analysis capabilities do not come cheap,

it may well be that there cannot be a direct pipeline to transmit sensed

data to every major field station, such as the headquarters for a ranger

district in the Forest Service, for example. Perhaps the lowest levels

to which data from the central facilities should be forwarded and where

the consoles for automated analysis should be located are the headquarters

for administrative and experiment station regions. It appears that the

sensing applications with best potentials might be effectively performed

on regional bases. These headquarters would be relatively close to both

field problems and to the managers and technicians acquainted with local

conditions. Such headquarters might well be the main depositories for

spectral signatures and other information which would facilitate inter-

pretation. By the same token, regional control of signatures and analysis
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should facilitate the frequent changes and improvements that are in-

evitable as signature research and knowledge of the regional environment

increase. Most of all, if analyses are done on regional bases those

most concerned with day-to-day management of resources would be in close

proximity to current analyses and the analysts.

As compared to analysis of data on cultivated lands, analysis of

forest and range data will no doubt require much more effort by humans.

Only at some indeterminate future date may machines take over the same

proportion of analysis in the forestry and range disciplines as the

LARS report (51) visualizes in the agricultural discipline. This means

that in analysis of forest and range data there will be more need for

instruments which can display actual images from several spectral bands

and from sequential coverages than there will be for the automatic readouts

of multispectral scanners as advocated for agriculture in the LARS in-

vestigations. Image enhancement may also be used to advantage in graphics

to facilitate human interpretation, and presumably automatic equipment

will be used to help screen out irrelevant data. Hopefully,no great

investment will be required to develop such analytical equipment.

Apparently there are on-shelf items of hardware which might be adapted

or modified to meet forest and range requirements. There are several

instrument makers who would be pleased, apparently, to fulfil such

requests within a relatively short time if the requirements were known.

It may be noted that such development might be most effectively done by

commercial agencies--in contrast to the great amount of research and

development of signatures, which apparently can best be done by coopera-

tive research efforts of the Forest Service and universities.
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Testing of Applications

Operational, full-scale tests of the applications cited earlier in

this study cannot be made until components of a complete data collecting

and handling system have been put together. The timing for the first

full-scale test of an application depends in large part upon judgment--as

to the geographic area for the test, whether enough signatures have

been validated to make the test worthwhile, whether enough ground truth is

available (or can be expeditiously collected) to check unforeseen prob-

lems that may occur, etc. Hopefully, well in advance of the decision

for a full-scale test, considerable thought will have been given to

prospects aside from the investigations on spectral signatures and on

details of data handling and analysis. The kinds of related efforts

that are necessary are explicit or implied in the enumeration of the

eleven forestry areas recommended for forestry research in the USDA

program document (80). All but one of those areas correspond to appli-

cations or groups of applications emphasized inthis current study. That

one area (site quality) appears to be intangible and difficult to attack

by sensing since there seems to be no consensus amoung foresters as to

what site really is. Therefore it is submerged in the present study

under "detailed land classification". Only one of the eleven forestry

areas identified in the USDA document (detection and mapping of forest

fires) is not deemed to be amenable to sensing from space in the near

future, for reasons given in the present study.

Research-development of Sensors

The development of photographic equipment and processing would seem
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to be ahead of effective use of the equipment in the forest and range

disciplines. There is evidently need for more research and development

of other sensors that could contribute to forest and range disciplines.

Better spatial resolutions are needed in thermal sensing than can be

obtained by present equipment. Improved thermal sensing could contribute

greatly not only in fire detection and mapping applications; it might

also lead to a breakthrough in detection of stresses on the forest

vegetation. Yet even greater results might be achieved by research and

development in microwave sensing with the aim of providing an all-weather

capability useful in several forest and range applications, and not

presently filled by radar. How much support land-managing agencies are

justified in giving to development of better sensors depends upon success

in establishing signatures for important phenomena and objects. It is

futile to keep on developing sensors that provide finer resolution and

discrimination between "noises" and "responses" unless those "responses"

can be identified as signatures of things that are significant.

Benefit-Cost Studies

Under the stimulation induced by the recent, widespread promotion

of remote sensing there has been some tendency to ignore economic benefits

of sensing as immaterial provided an argument can be made for intangible

benefits. Without downgrading the intrinsic values of benefits which

are so intangible they appear not to be measurable in dollars, the writer

suggests that those who argue solely on the basis of benefits not

valued in dollars must shoulder the full burden of proof for their

arguments. As a straightforward, logical procedure after technical
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feasibility of a technique of sensing has been established, there should

be prompt investigations to determine whether the technique is economi-

cally feasible of operational application. The ideal determination of

whether such a new technique is prospectively useful should be based on

study of the benefit-cost ratio anticipated through operational applica-

tion of the technique and comparisons to show whether that ratio is

more or less favorable than the ratio anticipated by any alternative

(usually current) method of data collection. The ratios should be ex-

pressed in monetary terms even if those are not precisely determinable.

A less than ideal approach to comparisons of alternative techniques

is to ignore estimation of benefits and assume that benefits must exceed

costs for any technique used for a data collecting purpose in the past;

then to assume that any less costly technique of collecting the same

data is even more acceptable.

This economic phase of research, needed as a basis for any changes

recommended in general methods of data collection, obviously cannot be

made without realistic experience data. Thus it should follow closely

behind the final stages of developing and testing the technical feasibility

of a technique.

Education

Without a strong,continuing program of education, of course, much

effort to develop useful techniques may be wasted. Since this point

applies to any field of research endeavor, the reader may question why

the writer ends his report on this note. Partly this is because education

was touched on several times (and not only by educators) during inter-
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views. Partly it is that the writer finishes this study with some of the

same apprehension that he had when he started it: that there has been a

lot of misinformation, along with information, about remote sensing.

He hopes, along with many others, that future emphasis will be on

information and education. Unless this is so there is a strong proba-

bility that remote sensing may remain a fascinating topic of conversation--

for a time--and will not be used in the foreseeable future nearly to its

capabilities.

Propaganda (in its derogatory sense) contrasted with education in

remote sensing is a subject that need not be taken up here. It is

pertinent to emphasize that the present cooperative partnership between

land-managing agencies like the U.S. Forest Service, the U.S. Bureau

of Land Management and the Oregon State Land Board on the one hand

and universities on the other is a healthy one to insure that proven

research and development in remote sensing is used. Not necessarily

will this be insured without continuing close cooperation between those

agencies. The university graduates who are recruited by the land-managing

agencies should have more technical knowhow than those who preceded them.

But it will do neither them nor the agency they work for any good unless

they can demonstrate knowhow resting on theory soundly supported by

research and development. One of the ways to insure this, naturally, is

for the universities to participate in research and development of tech-

niques to simplify or solve problems that are faced by resource managers.

Another coincident way, naturally, is for resource managers to participate

through seminars or as invited speakers in the classrooms of their

potential recruits.
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VIII. APPENDIX - A

A. List of persons who furnished pertinent information (See
preface for several others).

Aldred. A.H. Grad. student,Univ. of Calif. on leave from Canadian
Dept. of Forestry, Ottawa, Ontario, Canada.

Aldrich, R. Principal Research Forester, Remote Sensing Project,
PSWF&RES, Berkeley, Calif.

Aufenthie, Thomas Timber Inventories, USBLM, Portland, Oregon.

Barrows, Jack Director, Div. of Forest Fire and Atmospheric
Science Research, USFS, Washington, D.C.

Baughman, Robert G. Principal Research Meteorologist, Lightning
Research Project, Northern Forest Fire Lab.,
Missoula, Mont.

Bedell, Thomas Prof. of Range Improvement & Utilization, Dept.
of Range Management, Oregon State University,
Corvallis, Oregon.

Bongberg, J.W. Director, Div. Forest Pest Control, USFS, Washington
D.C.

Boring, Wm. R. Chief, Water Management Branch, USFS, Portland, Ore.

Brackebush, Arthur P. Chief, Northern Forest Fire Lab., USFS, Missoula
Montana.

Bradley, Richard In charge Photographic Contracting, USFS, Wash., D.C.

Carneggie, David Forestry Remote Sensing Laboratory, Berkeley, Calif.

Castles, John R. Chief, Timber Sales Admin. Branch, USFS, Wash., D.C.

Chandler, Craig C. Div. of Forest Fire & Atmospheric Science Research,
USFS, Washington, D.C.

Clifton, Joseph Director, Photographic Division, ASCS, USDA.
Washington, D.C.

Colwell, Wm. Proj. Leader Soil-Veg. Survey, PSWF&RES, Berkeley,
Calif.

Dickerman, M.B. Associate Deputy Chief for Research, USFS, Wash., D.C.

Dill, Henry W. Land Resources Branch, ERS, Washington, D.C.

Dilworth, J.R. Head, Dept. of Forest Management, School of Forestry,
Oregon State Univ., Corvallis, Oregon.
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Dunford, E.G.

Draeger, Wm.

Driscoll, Richard S.

Fahnestock, Geo. R.

Farrell, Norman J.

Fuquay, Donald M.

Furniss, Robert L.

Gillmore, Lloyd

Graham, Howard E.

Halverson, Howard G.

Harman, Wm. E.

Hartong, Allan L.

Hirsch, S.N.

Hixon, Homer

Hoglind, Herbert

Holscher, Clark E.

Hopkins, Walter

Howlett,

Iverson,

M.R.

John

Johnson, Edward A.

Johnson, Floyd A.

Chief, Branch of Watershed Management Research,
USFS, Washington, D.C.

Forestry Remote Sensing Laboratory, Berkeley, Calif.

Principal Plant Ecologist, Rocky Mtn. For. & Range
Exper. Sta.,Fort Collins, Colo.

Leader, Fuel Appraisal Research Project, PNWF&RES,
Seattle, Washington.

Chief of Fire Control, USFS, San Francisco, Calif.

Leader, Lightning Research Project, Northern Forest
Fire Laboratory, USFS, Missoula, Mont.

Consultant in Forest Entomology & Forest Pest
Control, Portland, Oregon.

Chief, Div. of Watershed Management, USFS, Portland, Ore.

Meteorological Services, Div. of Fire Control,
USFS, Portland, Oregon.

Water Yield Improvement, PSWF&RES, Berkeley, Calif.

Washington, D.C. Representative, Mark Hurd Aerial Surveys.

Research Forester, Forest Fire Science Project,

Northern Forest Fire Lab., USFS, Missoula, Mont.

Leader, Fire Scan Research Project, Northern Forest

Fire Lab., USFS, Missoula, Montana.

Director, Div. of Timber Management, USFS, Wash., D.C.

In charge,Forest Management, U.S. Bureau of Land
Management, Portland, Oregon.

Director, Div. of International Forestry, USFS, Wash., D.C.

Chief, Branch of Forest Recreation Research, USFS,
Washington, D.C.

In charge Photogrammetric Center, USFS, Wash., D.C.

Specialist, Remote Sensing, Photographic Div.,
ASCS, USDA, Washington, D.C.

Chief, Branch Environmental Management, Div. of Water-
shed Management, Washington, D.C.

In charge, Biometrics, PNWF&RES, Portland, Oregon.
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Josephson, H.R.

Kampmann, T.S.

Langley, Philip G.

Lent, Jerry D.

Lowden, Merle E.

Luney, Percy B.

McArdle, Richard
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